Collaborative Sparse Hyperspectral Unmixing Using [Formula Omitted] Norm
Sparse unmixing has been applied on hyperspectral imagery popularly in recent years. It assumes that every observed signature is a linear combination of just a few spectra (end-members) from a known spectral library. However, solving the sparse unmixing problem directly (using [Formula Omitted] norm...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on geoscience and remote sensing 2018-01, Vol.56 (9), p.5495 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 9 |
container_start_page | 5495 |
container_title | IEEE transactions on geoscience and remote sensing |
container_volume | 56 |
creator | Shi, Zhenwei Shi, Tianyang Zhou, Min Xu, Xia |
description | Sparse unmixing has been applied on hyperspectral imagery popularly in recent years. It assumes that every observed signature is a linear combination of just a few spectra (end-members) from a known spectral library. However, solving the sparse unmixing problem directly (using [Formula Omitted] norm to control the sparsity of solution at a low level) is NP-hard. Most related works focus on convex relaxation methods, but the sparsity and accuracy of results cannot be well guaranteed. Under these circumstances, this paper proposes a novel algorithm termed collaborative sparse hyperspectral unmixing using [Formula Omitted] norm (CSUnL0), which aims at solving [Formula Omitted] problem directly. First, it introduces a row-hard-threshold function. The row-hard-threshold function makes it possible to combine [Formula Omitted] norm, instead of its approximate norms, with alternating direction method of multipliers. Compared with the convex relaxation methods, the [Formula Omitted] norm constraint guarantees sparser and more accurate results. Moreover, the antinoise ability of CSUnL0 also gets improved. Second, CSUnL0 uses [Formula Omitted] norm of each end-members’ abundance across the whole map as a collaborative constraint, which can take advantage of the hyperspectral dat’s subspace property. The experimental results indicate that [Formula Omitted] norm contributes to acquiring a more sparser solution and helps CSUnL0 to enhance calculation accuracy. |
doi_str_mv | 10.1109/TGRS.2018.2818703 |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2117149730</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2117149730</sourcerecordid><originalsourceid>FETCH-proquest_journals_21171497303</originalsourceid><addsrcrecordid>eNqNissKwjAUBYMoWB8f4C7guvXetLXpWtSuFHysRCRqlEra1CQV_XsV_AA3Z2DmEDJACBAhHW3mq3XAAHnAOPIEwgbxMI65D-MoahIPMB37jKesTTrW3gAwijHxSDbRSomjNsLlD0nXlTBW0uxVSWMreXJGKLoti_yZl1e6td_dzbQpaiXossidk-c9XXxEj7QuQlnZ_7FLhrPpZpL5ldH3Wlp3uOnalJ90YIgJRmkSQvjf6w0mzEMh</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2117149730</pqid></control><display><type>article</type><title>Collaborative Sparse Hyperspectral Unmixing Using [Formula Omitted] Norm</title><source>IEEE Electronic Library (IEL)</source><creator>Shi, Zhenwei ; Shi, Tianyang ; Zhou, Min ; Xu, Xia</creator><creatorcontrib>Shi, Zhenwei ; Shi, Tianyang ; Zhou, Min ; Xu, Xia</creatorcontrib><description>Sparse unmixing has been applied on hyperspectral imagery popularly in recent years. It assumes that every observed signature is a linear combination of just a few spectra (end-members) from a known spectral library. However, solving the sparse unmixing problem directly (using [Formula Omitted] norm to control the sparsity of solution at a low level) is NP-hard. Most related works focus on convex relaxation methods, but the sparsity and accuracy of results cannot be well guaranteed. Under these circumstances, this paper proposes a novel algorithm termed collaborative sparse hyperspectral unmixing using [Formula Omitted] norm (CSUnL0), which aims at solving [Formula Omitted] problem directly. First, it introduces a row-hard-threshold function. The row-hard-threshold function makes it possible to combine [Formula Omitted] norm, instead of its approximate norms, with alternating direction method of multipliers. Compared with the convex relaxation methods, the [Formula Omitted] norm constraint guarantees sparser and more accurate results. Moreover, the antinoise ability of CSUnL0 also gets improved. Second, CSUnL0 uses [Formula Omitted] norm of each end-members’ abundance across the whole map as a collaborative constraint, which can take advantage of the hyperspectral dat’s subspace property. The experimental results indicate that [Formula Omitted] norm contributes to acquiring a more sparser solution and helps CSUnL0 to enhance calculation accuracy.</description><identifier>ISSN: 0196-2892</identifier><identifier>EISSN: 1558-0644</identifier><identifier>DOI: 10.1109/TGRS.2018.2818703</identifier><language>eng</language><publisher>New York: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</publisher><subject>Accuracy ; Collaboration ; Imagery ; Low level ; Methods ; Norms ; Sparsity</subject><ispartof>IEEE transactions on geoscience and remote sensing, 2018-01, Vol.56 (9), p.5495</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Shi, Zhenwei</creatorcontrib><creatorcontrib>Shi, Tianyang</creatorcontrib><creatorcontrib>Zhou, Min</creatorcontrib><creatorcontrib>Xu, Xia</creatorcontrib><title>Collaborative Sparse Hyperspectral Unmixing Using [Formula Omitted] Norm</title><title>IEEE transactions on geoscience and remote sensing</title><description>Sparse unmixing has been applied on hyperspectral imagery popularly in recent years. It assumes that every observed signature is a linear combination of just a few spectra (end-members) from a known spectral library. However, solving the sparse unmixing problem directly (using [Formula Omitted] norm to control the sparsity of solution at a low level) is NP-hard. Most related works focus on convex relaxation methods, but the sparsity and accuracy of results cannot be well guaranteed. Under these circumstances, this paper proposes a novel algorithm termed collaborative sparse hyperspectral unmixing using [Formula Omitted] norm (CSUnL0), which aims at solving [Formula Omitted] problem directly. First, it introduces a row-hard-threshold function. The row-hard-threshold function makes it possible to combine [Formula Omitted] norm, instead of its approximate norms, with alternating direction method of multipliers. Compared with the convex relaxation methods, the [Formula Omitted] norm constraint guarantees sparser and more accurate results. Moreover, the antinoise ability of CSUnL0 also gets improved. Second, CSUnL0 uses [Formula Omitted] norm of each end-members’ abundance across the whole map as a collaborative constraint, which can take advantage of the hyperspectral dat’s subspace property. The experimental results indicate that [Formula Omitted] norm contributes to acquiring a more sparser solution and helps CSUnL0 to enhance calculation accuracy.</description><subject>Accuracy</subject><subject>Collaboration</subject><subject>Imagery</subject><subject>Low level</subject><subject>Methods</subject><subject>Norms</subject><subject>Sparsity</subject><issn>0196-2892</issn><issn>1558-0644</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqNissKwjAUBYMoWB8f4C7guvXetLXpWtSuFHysRCRqlEra1CQV_XsV_AA3Z2DmEDJACBAhHW3mq3XAAHnAOPIEwgbxMI65D-MoahIPMB37jKesTTrW3gAwijHxSDbRSomjNsLlD0nXlTBW0uxVSWMreXJGKLoti_yZl1e6td_dzbQpaiXossidk-c9XXxEj7QuQlnZ_7FLhrPpZpL5ldH3Wlp3uOnalJ90YIgJRmkSQvjf6w0mzEMh</recordid><startdate>20180101</startdate><enddate>20180101</enddate><creator>Shi, Zhenwei</creator><creator>Shi, Tianyang</creator><creator>Zhou, Min</creator><creator>Xu, Xia</creator><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope></search><sort><creationdate>20180101</creationdate><title>Collaborative Sparse Hyperspectral Unmixing Using [Formula Omitted] Norm</title><author>Shi, Zhenwei ; Shi, Tianyang ; Zhou, Min ; Xu, Xia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_21171497303</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Accuracy</topic><topic>Collaboration</topic><topic>Imagery</topic><topic>Low level</topic><topic>Methods</topic><topic>Norms</topic><topic>Sparsity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shi, Zhenwei</creatorcontrib><creatorcontrib>Shi, Tianyang</creatorcontrib><creatorcontrib>Zhou, Min</creatorcontrib><creatorcontrib>Xu, Xia</creatorcontrib><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on geoscience and remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shi, Zhenwei</au><au>Shi, Tianyang</au><au>Zhou, Min</au><au>Xu, Xia</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Collaborative Sparse Hyperspectral Unmixing Using [Formula Omitted] Norm</atitle><jtitle>IEEE transactions on geoscience and remote sensing</jtitle><date>2018-01-01</date><risdate>2018</risdate><volume>56</volume><issue>9</issue><spage>5495</spage><pages>5495-</pages><issn>0196-2892</issn><eissn>1558-0644</eissn><abstract>Sparse unmixing has been applied on hyperspectral imagery popularly in recent years. It assumes that every observed signature is a linear combination of just a few spectra (end-members) from a known spectral library. However, solving the sparse unmixing problem directly (using [Formula Omitted] norm to control the sparsity of solution at a low level) is NP-hard. Most related works focus on convex relaxation methods, but the sparsity and accuracy of results cannot be well guaranteed. Under these circumstances, this paper proposes a novel algorithm termed collaborative sparse hyperspectral unmixing using [Formula Omitted] norm (CSUnL0), which aims at solving [Formula Omitted] problem directly. First, it introduces a row-hard-threshold function. The row-hard-threshold function makes it possible to combine [Formula Omitted] norm, instead of its approximate norms, with alternating direction method of multipliers. Compared with the convex relaxation methods, the [Formula Omitted] norm constraint guarantees sparser and more accurate results. Moreover, the antinoise ability of CSUnL0 also gets improved. Second, CSUnL0 uses [Formula Omitted] norm of each end-members’ abundance across the whole map as a collaborative constraint, which can take advantage of the hyperspectral dat’s subspace property. The experimental results indicate that [Formula Omitted] norm contributes to acquiring a more sparser solution and helps CSUnL0 to enhance calculation accuracy.</abstract><cop>New York</cop><pub>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</pub><doi>10.1109/TGRS.2018.2818703</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0196-2892 |
ispartof | IEEE transactions on geoscience and remote sensing, 2018-01, Vol.56 (9), p.5495 |
issn | 0196-2892 1558-0644 |
language | eng |
recordid | cdi_proquest_journals_2117149730 |
source | IEEE Electronic Library (IEL) |
subjects | Accuracy Collaboration Imagery Low level Methods Norms Sparsity |
title | Collaborative Sparse Hyperspectral Unmixing Using [Formula Omitted] Norm |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T05%3A27%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Collaborative%20Sparse%20Hyperspectral%20Unmixing%20Using%20%5BFormula%20Omitted%5D%20Norm&rft.jtitle=IEEE%20transactions%20on%20geoscience%20and%20remote%20sensing&rft.au=Shi,%20Zhenwei&rft.date=2018-01-01&rft.volume=56&rft.issue=9&rft.spage=5495&rft.pages=5495-&rft.issn=0196-2892&rft.eissn=1558-0644&rft_id=info:doi/10.1109/TGRS.2018.2818703&rft_dat=%3Cproquest%3E2117149730%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2117149730&rft_id=info:pmid/&rfr_iscdi=true |