Collaborative Sparse Hyperspectral Unmixing Using [Formula Omitted] Norm

Sparse unmixing has been applied on hyperspectral imagery popularly in recent years. It assumes that every observed signature is a linear combination of just a few spectra (end-members) from a known spectral library. However, solving the sparse unmixing problem directly (using [Formula Omitted] norm...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on geoscience and remote sensing 2018-01, Vol.56 (9), p.5495
Hauptverfasser: Shi, Zhenwei, Shi, Tianyang, Zhou, Min, Xu, Xia
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 9
container_start_page 5495
container_title IEEE transactions on geoscience and remote sensing
container_volume 56
creator Shi, Zhenwei
Shi, Tianyang
Zhou, Min
Xu, Xia
description Sparse unmixing has been applied on hyperspectral imagery popularly in recent years. It assumes that every observed signature is a linear combination of just a few spectra (end-members) from a known spectral library. However, solving the sparse unmixing problem directly (using [Formula Omitted] norm to control the sparsity of solution at a low level) is NP-hard. Most related works focus on convex relaxation methods, but the sparsity and accuracy of results cannot be well guaranteed. Under these circumstances, this paper proposes a novel algorithm termed collaborative sparse hyperspectral unmixing using [Formula Omitted] norm (CSUnL0), which aims at solving [Formula Omitted] problem directly. First, it introduces a row-hard-threshold function. The row-hard-threshold function makes it possible to combine [Formula Omitted] norm, instead of its approximate norms, with alternating direction method of multipliers. Compared with the convex relaxation methods, the [Formula Omitted] norm constraint guarantees sparser and more accurate results. Moreover, the antinoise ability of CSUnL0 also gets improved. Second, CSUnL0 uses [Formula Omitted] norm of each end-members’ abundance across the whole map as a collaborative constraint, which can take advantage of the hyperspectral dat’s subspace property. The experimental results indicate that [Formula Omitted] norm contributes to acquiring a more sparser solution and helps CSUnL0 to enhance calculation accuracy.
doi_str_mv 10.1109/TGRS.2018.2818703
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2117149730</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2117149730</sourcerecordid><originalsourceid>FETCH-proquest_journals_21171497303</originalsourceid><addsrcrecordid>eNqNissKwjAUBYMoWB8f4C7guvXetLXpWtSuFHysRCRqlEra1CQV_XsV_AA3Z2DmEDJACBAhHW3mq3XAAHnAOPIEwgbxMI65D-MoahIPMB37jKesTTrW3gAwijHxSDbRSomjNsLlD0nXlTBW0uxVSWMreXJGKLoti_yZl1e6td_dzbQpaiXossidk-c9XXxEj7QuQlnZ_7FLhrPpZpL5ldH3Wlp3uOnalJ90YIgJRmkSQvjf6w0mzEMh</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2117149730</pqid></control><display><type>article</type><title>Collaborative Sparse Hyperspectral Unmixing Using [Formula Omitted] Norm</title><source>IEEE Electronic Library (IEL)</source><creator>Shi, Zhenwei ; Shi, Tianyang ; Zhou, Min ; Xu, Xia</creator><creatorcontrib>Shi, Zhenwei ; Shi, Tianyang ; Zhou, Min ; Xu, Xia</creatorcontrib><description>Sparse unmixing has been applied on hyperspectral imagery popularly in recent years. It assumes that every observed signature is a linear combination of just a few spectra (end-members) from a known spectral library. However, solving the sparse unmixing problem directly (using [Formula Omitted] norm to control the sparsity of solution at a low level) is NP-hard. Most related works focus on convex relaxation methods, but the sparsity and accuracy of results cannot be well guaranteed. Under these circumstances, this paper proposes a novel algorithm termed collaborative sparse hyperspectral unmixing using [Formula Omitted] norm (CSUnL0), which aims at solving [Formula Omitted] problem directly. First, it introduces a row-hard-threshold function. The row-hard-threshold function makes it possible to combine [Formula Omitted] norm, instead of its approximate norms, with alternating direction method of multipliers. Compared with the convex relaxation methods, the [Formula Omitted] norm constraint guarantees sparser and more accurate results. Moreover, the antinoise ability of CSUnL0 also gets improved. Second, CSUnL0 uses [Formula Omitted] norm of each end-members’ abundance across the whole map as a collaborative constraint, which can take advantage of the hyperspectral dat’s subspace property. The experimental results indicate that [Formula Omitted] norm contributes to acquiring a more sparser solution and helps CSUnL0 to enhance calculation accuracy.</description><identifier>ISSN: 0196-2892</identifier><identifier>EISSN: 1558-0644</identifier><identifier>DOI: 10.1109/TGRS.2018.2818703</identifier><language>eng</language><publisher>New York: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</publisher><subject>Accuracy ; Collaboration ; Imagery ; Low level ; Methods ; Norms ; Sparsity</subject><ispartof>IEEE transactions on geoscience and remote sensing, 2018-01, Vol.56 (9), p.5495</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Shi, Zhenwei</creatorcontrib><creatorcontrib>Shi, Tianyang</creatorcontrib><creatorcontrib>Zhou, Min</creatorcontrib><creatorcontrib>Xu, Xia</creatorcontrib><title>Collaborative Sparse Hyperspectral Unmixing Using [Formula Omitted] Norm</title><title>IEEE transactions on geoscience and remote sensing</title><description>Sparse unmixing has been applied on hyperspectral imagery popularly in recent years. It assumes that every observed signature is a linear combination of just a few spectra (end-members) from a known spectral library. However, solving the sparse unmixing problem directly (using [Formula Omitted] norm to control the sparsity of solution at a low level) is NP-hard. Most related works focus on convex relaxation methods, but the sparsity and accuracy of results cannot be well guaranteed. Under these circumstances, this paper proposes a novel algorithm termed collaborative sparse hyperspectral unmixing using [Formula Omitted] norm (CSUnL0), which aims at solving [Formula Omitted] problem directly. First, it introduces a row-hard-threshold function. The row-hard-threshold function makes it possible to combine [Formula Omitted] norm, instead of its approximate norms, with alternating direction method of multipliers. Compared with the convex relaxation methods, the [Formula Omitted] norm constraint guarantees sparser and more accurate results. Moreover, the antinoise ability of CSUnL0 also gets improved. Second, CSUnL0 uses [Formula Omitted] norm of each end-members’ abundance across the whole map as a collaborative constraint, which can take advantage of the hyperspectral dat’s subspace property. The experimental results indicate that [Formula Omitted] norm contributes to acquiring a more sparser solution and helps CSUnL0 to enhance calculation accuracy.</description><subject>Accuracy</subject><subject>Collaboration</subject><subject>Imagery</subject><subject>Low level</subject><subject>Methods</subject><subject>Norms</subject><subject>Sparsity</subject><issn>0196-2892</issn><issn>1558-0644</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqNissKwjAUBYMoWB8f4C7guvXetLXpWtSuFHysRCRqlEra1CQV_XsV_AA3Z2DmEDJACBAhHW3mq3XAAHnAOPIEwgbxMI65D-MoahIPMB37jKesTTrW3gAwijHxSDbRSomjNsLlD0nXlTBW0uxVSWMreXJGKLoti_yZl1e6td_dzbQpaiXossidk-c9XXxEj7QuQlnZ_7FLhrPpZpL5ldH3Wlp3uOnalJ90YIgJRmkSQvjf6w0mzEMh</recordid><startdate>20180101</startdate><enddate>20180101</enddate><creator>Shi, Zhenwei</creator><creator>Shi, Tianyang</creator><creator>Zhou, Min</creator><creator>Xu, Xia</creator><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope></search><sort><creationdate>20180101</creationdate><title>Collaborative Sparse Hyperspectral Unmixing Using [Formula Omitted] Norm</title><author>Shi, Zhenwei ; Shi, Tianyang ; Zhou, Min ; Xu, Xia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_21171497303</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Accuracy</topic><topic>Collaboration</topic><topic>Imagery</topic><topic>Low level</topic><topic>Methods</topic><topic>Norms</topic><topic>Sparsity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shi, Zhenwei</creatorcontrib><creatorcontrib>Shi, Tianyang</creatorcontrib><creatorcontrib>Zhou, Min</creatorcontrib><creatorcontrib>Xu, Xia</creatorcontrib><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on geoscience and remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shi, Zhenwei</au><au>Shi, Tianyang</au><au>Zhou, Min</au><au>Xu, Xia</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Collaborative Sparse Hyperspectral Unmixing Using [Formula Omitted] Norm</atitle><jtitle>IEEE transactions on geoscience and remote sensing</jtitle><date>2018-01-01</date><risdate>2018</risdate><volume>56</volume><issue>9</issue><spage>5495</spage><pages>5495-</pages><issn>0196-2892</issn><eissn>1558-0644</eissn><abstract>Sparse unmixing has been applied on hyperspectral imagery popularly in recent years. It assumes that every observed signature is a linear combination of just a few spectra (end-members) from a known spectral library. However, solving the sparse unmixing problem directly (using [Formula Omitted] norm to control the sparsity of solution at a low level) is NP-hard. Most related works focus on convex relaxation methods, but the sparsity and accuracy of results cannot be well guaranteed. Under these circumstances, this paper proposes a novel algorithm termed collaborative sparse hyperspectral unmixing using [Formula Omitted] norm (CSUnL0), which aims at solving [Formula Omitted] problem directly. First, it introduces a row-hard-threshold function. The row-hard-threshold function makes it possible to combine [Formula Omitted] norm, instead of its approximate norms, with alternating direction method of multipliers. Compared with the convex relaxation methods, the [Formula Omitted] norm constraint guarantees sparser and more accurate results. Moreover, the antinoise ability of CSUnL0 also gets improved. Second, CSUnL0 uses [Formula Omitted] norm of each end-members’ abundance across the whole map as a collaborative constraint, which can take advantage of the hyperspectral dat’s subspace property. The experimental results indicate that [Formula Omitted] norm contributes to acquiring a more sparser solution and helps CSUnL0 to enhance calculation accuracy.</abstract><cop>New York</cop><pub>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</pub><doi>10.1109/TGRS.2018.2818703</doi></addata></record>
fulltext fulltext
identifier ISSN: 0196-2892
ispartof IEEE transactions on geoscience and remote sensing, 2018-01, Vol.56 (9), p.5495
issn 0196-2892
1558-0644
language eng
recordid cdi_proquest_journals_2117149730
source IEEE Electronic Library (IEL)
subjects Accuracy
Collaboration
Imagery
Low level
Methods
Norms
Sparsity
title Collaborative Sparse Hyperspectral Unmixing Using [Formula Omitted] Norm
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T05%3A27%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Collaborative%20Sparse%20Hyperspectral%20Unmixing%20Using%20%5BFormula%20Omitted%5D%20Norm&rft.jtitle=IEEE%20transactions%20on%20geoscience%20and%20remote%20sensing&rft.au=Shi,%20Zhenwei&rft.date=2018-01-01&rft.volume=56&rft.issue=9&rft.spage=5495&rft.pages=5495-&rft.issn=0196-2892&rft.eissn=1558-0644&rft_id=info:doi/10.1109/TGRS.2018.2818703&rft_dat=%3Cproquest%3E2117149730%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2117149730&rft_id=info:pmid/&rfr_iscdi=true