Cost-Constrained QoS Optimization for Approximate Computation Real-Time Tasks in Heterogeneous MPSoCs
Internet of Things devices, such as video-based detectors or road side units are being deployed in emerging applications like sustainable and intelligent transportation systems. Oftentimes, stringent operation and energy cost constraints are exerted on this type of applications, necessitating a hybr...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on computer-aided design of integrated circuits and systems 2018-09, Vol.37 (9), p.1733-1746 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1746 |
---|---|
container_issue | 9 |
container_start_page | 1733 |
container_title | IEEE transactions on computer-aided design of integrated circuits and systems |
container_volume | 37 |
creator | Tongquan Wei Junlong Zhou Kun Cao Peijin Cong Mingsong Chen Gongxuan Zhang Hu, Xiaobo Sharon Jianming Yan |
description | Internet of Things devices, such as video-based detectors or road side units are being deployed in emerging applications like sustainable and intelligent transportation systems. Oftentimes, stringent operation and energy cost constraints are exerted on this type of applications, necessitating a hybrid supply of renewable and grid energy. The key issue of a cost-constrained hybrid of renewable and grid power is its uncertainty in energy availability. The characteristic of approximate computation that accepts an approximate result when energy is limited and executes more computations yielding better results if more energy is available, can be exploited to intelligently handle the uncertainty. In this paper, we first propose an energy-adaptive task allocation scheme that optimally assigns real-time approximate-computation tasks to individual processors and subsequently enables a matching of the cost-constrained hybrid supply of energy with the energy demand of the resultant task schedule. We then present a quality of service (QoS)-driven task scheduling scheme that determines the optional execution cycles of tasks on individual processors for optimization of system QoS. A dynamic task scheduling scheme is also designed to adapt at runtime the task execution to the varying amount of the available energy. Simulation results show that our schemes can reduce system energy consumption by up to 29% and improve system QoS by up to 108% as compared to benchmarking algorithms. |
doi_str_mv | 10.1109/TCAD.2017.2772896 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2117132187</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8105815</ieee_id><sourcerecordid>2117132187</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-ed6bfd00b6d1b015e1a85c9f9c47c0a21395abe42211cda4b112cea130cc56953</originalsourceid><addsrcrecordid>eNo9kMtOwzAQRS0EEqXwAYiNJdYpHieO42UVHkUqKtCyjhxnglLaONiOBHw9qYJYzWLOncch5BLYDICpm00-v51xBnLGpeSZSo_IBFQsowQEHJMJ4zKLGJPslJx5v2UMEsHVhGBufYhy2_rgdNNiRV_smq660OybHx0a29LaOjrvOme_mr0OSHO77_ow9l5R76JNs0e60f7D06alCwzo7Du2aHtPn57XNvfn5KTWO48Xf3VK3u7vNvkiWq4eHvP5MjJcxSHCKi3rirEyraBkIBB0JoyqlUmkYZpDrIQuMeEcwFQ6KQG4QQ0xM0akSsRTcj3OHa797NGHYmt71w4riyEiIeaQyYGCkTLOeu-wLjo3vOa-C2DFwWZxsFkcbBZ_NofM1ZhpEPGfz4CJDET8C_jJcW8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2117132187</pqid></control><display><type>article</type><title>Cost-Constrained QoS Optimization for Approximate Computation Real-Time Tasks in Heterogeneous MPSoCs</title><source>IEEE Electronic Library (IEL)</source><creator>Tongquan Wei ; Junlong Zhou ; Kun Cao ; Peijin Cong ; Mingsong Chen ; Gongxuan Zhang ; Hu, Xiaobo Sharon ; Jianming Yan</creator><creatorcontrib>Tongquan Wei ; Junlong Zhou ; Kun Cao ; Peijin Cong ; Mingsong Chen ; Gongxuan Zhang ; Hu, Xiaobo Sharon ; Jianming Yan</creatorcontrib><description>Internet of Things devices, such as video-based detectors or road side units are being deployed in emerging applications like sustainable and intelligent transportation systems. Oftentimes, stringent operation and energy cost constraints are exerted on this type of applications, necessitating a hybrid supply of renewable and grid energy. The key issue of a cost-constrained hybrid of renewable and grid power is its uncertainty in energy availability. The characteristic of approximate computation that accepts an approximate result when energy is limited and executes more computations yielding better results if more energy is available, can be exploited to intelligently handle the uncertainty. In this paper, we first propose an energy-adaptive task allocation scheme that optimally assigns real-time approximate-computation tasks to individual processors and subsequently enables a matching of the cost-constrained hybrid supply of energy with the energy demand of the resultant task schedule. We then present a quality of service (QoS)-driven task scheduling scheme that determines the optional execution cycles of tasks on individual processors for optimization of system QoS. A dynamic task scheduling scheme is also designed to adapt at runtime the task execution to the varying amount of the available energy. Simulation results show that our schemes can reduce system energy consumption by up to 29% and improve system QoS by up to 108% as compared to benchmarking algorithms.</description><identifier>ISSN: 0278-0070</identifier><identifier>EISSN: 1937-4151</identifier><identifier>DOI: 10.1109/TCAD.2017.2772896</identifier><identifier>CODEN: ITCSDI</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Approximate computation ; Batteries ; Computer simulation ; Computing time ; Degradation ; Energy ; Energy consumption ; hybrid energy systems ; Intelligent transportation systems ; Optimization ; Processors ; Program processors ; Quality of service ; quality of service (QoS) optimization ; Real time ; real-time multiprocessor system-on-chip (MPSoC) ; Real-time systems ; Task scheduling ; Uncertainty</subject><ispartof>IEEE transactions on computer-aided design of integrated circuits and systems, 2018-09, Vol.37 (9), p.1733-1746</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-ed6bfd00b6d1b015e1a85c9f9c47c0a21395abe42211cda4b112cea130cc56953</citedby><cites>FETCH-LOGICAL-c293t-ed6bfd00b6d1b015e1a85c9f9c47c0a21395abe42211cda4b112cea130cc56953</cites><orcidid>0000-0002-3922-0989 ; 0000-0001-9262-0407 ; 0000-0002-7734-4077 ; 0000-0002-7421-1711 ; 0000-0002-6636-9738</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8105815$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8105815$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Tongquan Wei</creatorcontrib><creatorcontrib>Junlong Zhou</creatorcontrib><creatorcontrib>Kun Cao</creatorcontrib><creatorcontrib>Peijin Cong</creatorcontrib><creatorcontrib>Mingsong Chen</creatorcontrib><creatorcontrib>Gongxuan Zhang</creatorcontrib><creatorcontrib>Hu, Xiaobo Sharon</creatorcontrib><creatorcontrib>Jianming Yan</creatorcontrib><title>Cost-Constrained QoS Optimization for Approximate Computation Real-Time Tasks in Heterogeneous MPSoCs</title><title>IEEE transactions on computer-aided design of integrated circuits and systems</title><addtitle>TCAD</addtitle><description>Internet of Things devices, such as video-based detectors or road side units are being deployed in emerging applications like sustainable and intelligent transportation systems. Oftentimes, stringent operation and energy cost constraints are exerted on this type of applications, necessitating a hybrid supply of renewable and grid energy. The key issue of a cost-constrained hybrid of renewable and grid power is its uncertainty in energy availability. The characteristic of approximate computation that accepts an approximate result when energy is limited and executes more computations yielding better results if more energy is available, can be exploited to intelligently handle the uncertainty. In this paper, we first propose an energy-adaptive task allocation scheme that optimally assigns real-time approximate-computation tasks to individual processors and subsequently enables a matching of the cost-constrained hybrid supply of energy with the energy demand of the resultant task schedule. We then present a quality of service (QoS)-driven task scheduling scheme that determines the optional execution cycles of tasks on individual processors for optimization of system QoS. A dynamic task scheduling scheme is also designed to adapt at runtime the task execution to the varying amount of the available energy. Simulation results show that our schemes can reduce system energy consumption by up to 29% and improve system QoS by up to 108% as compared to benchmarking algorithms.</description><subject>Approximate computation</subject><subject>Batteries</subject><subject>Computer simulation</subject><subject>Computing time</subject><subject>Degradation</subject><subject>Energy</subject><subject>Energy consumption</subject><subject>hybrid energy systems</subject><subject>Intelligent transportation systems</subject><subject>Optimization</subject><subject>Processors</subject><subject>Program processors</subject><subject>Quality of service</subject><subject>quality of service (QoS) optimization</subject><subject>Real time</subject><subject>real-time multiprocessor system-on-chip (MPSoC)</subject><subject>Real-time systems</subject><subject>Task scheduling</subject><subject>Uncertainty</subject><issn>0278-0070</issn><issn>1937-4151</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kMtOwzAQRS0EEqXwAYiNJdYpHieO42UVHkUqKtCyjhxnglLaONiOBHw9qYJYzWLOncch5BLYDICpm00-v51xBnLGpeSZSo_IBFQsowQEHJMJ4zKLGJPslJx5v2UMEsHVhGBufYhy2_rgdNNiRV_smq660OybHx0a29LaOjrvOme_mr0OSHO77_ow9l5R76JNs0e60f7D06alCwzo7Du2aHtPn57XNvfn5KTWO48Xf3VK3u7vNvkiWq4eHvP5MjJcxSHCKi3rirEyraBkIBB0JoyqlUmkYZpDrIQuMeEcwFQ6KQG4QQ0xM0akSsRTcj3OHa797NGHYmt71w4riyEiIeaQyYGCkTLOeu-wLjo3vOa-C2DFwWZxsFkcbBZ_NofM1ZhpEPGfz4CJDET8C_jJcW8</recordid><startdate>20180901</startdate><enddate>20180901</enddate><creator>Tongquan Wei</creator><creator>Junlong Zhou</creator><creator>Kun Cao</creator><creator>Peijin Cong</creator><creator>Mingsong Chen</creator><creator>Gongxuan Zhang</creator><creator>Hu, Xiaobo Sharon</creator><creator>Jianming Yan</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-3922-0989</orcidid><orcidid>https://orcid.org/0000-0001-9262-0407</orcidid><orcidid>https://orcid.org/0000-0002-7734-4077</orcidid><orcidid>https://orcid.org/0000-0002-7421-1711</orcidid><orcidid>https://orcid.org/0000-0002-6636-9738</orcidid></search><sort><creationdate>20180901</creationdate><title>Cost-Constrained QoS Optimization for Approximate Computation Real-Time Tasks in Heterogeneous MPSoCs</title><author>Tongquan Wei ; Junlong Zhou ; Kun Cao ; Peijin Cong ; Mingsong Chen ; Gongxuan Zhang ; Hu, Xiaobo Sharon ; Jianming Yan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-ed6bfd00b6d1b015e1a85c9f9c47c0a21395abe42211cda4b112cea130cc56953</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Approximate computation</topic><topic>Batteries</topic><topic>Computer simulation</topic><topic>Computing time</topic><topic>Degradation</topic><topic>Energy</topic><topic>Energy consumption</topic><topic>hybrid energy systems</topic><topic>Intelligent transportation systems</topic><topic>Optimization</topic><topic>Processors</topic><topic>Program processors</topic><topic>Quality of service</topic><topic>quality of service (QoS) optimization</topic><topic>Real time</topic><topic>real-time multiprocessor system-on-chip (MPSoC)</topic><topic>Real-time systems</topic><topic>Task scheduling</topic><topic>Uncertainty</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tongquan Wei</creatorcontrib><creatorcontrib>Junlong Zhou</creatorcontrib><creatorcontrib>Kun Cao</creatorcontrib><creatorcontrib>Peijin Cong</creatorcontrib><creatorcontrib>Mingsong Chen</creatorcontrib><creatorcontrib>Gongxuan Zhang</creatorcontrib><creatorcontrib>Hu, Xiaobo Sharon</creatorcontrib><creatorcontrib>Jianming Yan</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on computer-aided design of integrated circuits and systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Tongquan Wei</au><au>Junlong Zhou</au><au>Kun Cao</au><au>Peijin Cong</au><au>Mingsong Chen</au><au>Gongxuan Zhang</au><au>Hu, Xiaobo Sharon</au><au>Jianming Yan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cost-Constrained QoS Optimization for Approximate Computation Real-Time Tasks in Heterogeneous MPSoCs</atitle><jtitle>IEEE transactions on computer-aided design of integrated circuits and systems</jtitle><stitle>TCAD</stitle><date>2018-09-01</date><risdate>2018</risdate><volume>37</volume><issue>9</issue><spage>1733</spage><epage>1746</epage><pages>1733-1746</pages><issn>0278-0070</issn><eissn>1937-4151</eissn><coden>ITCSDI</coden><abstract>Internet of Things devices, such as video-based detectors or road side units are being deployed in emerging applications like sustainable and intelligent transportation systems. Oftentimes, stringent operation and energy cost constraints are exerted on this type of applications, necessitating a hybrid supply of renewable and grid energy. The key issue of a cost-constrained hybrid of renewable and grid power is its uncertainty in energy availability. The characteristic of approximate computation that accepts an approximate result when energy is limited and executes more computations yielding better results if more energy is available, can be exploited to intelligently handle the uncertainty. In this paper, we first propose an energy-adaptive task allocation scheme that optimally assigns real-time approximate-computation tasks to individual processors and subsequently enables a matching of the cost-constrained hybrid supply of energy with the energy demand of the resultant task schedule. We then present a quality of service (QoS)-driven task scheduling scheme that determines the optional execution cycles of tasks on individual processors for optimization of system QoS. A dynamic task scheduling scheme is also designed to adapt at runtime the task execution to the varying amount of the available energy. Simulation results show that our schemes can reduce system energy consumption by up to 29% and improve system QoS by up to 108% as compared to benchmarking algorithms.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TCAD.2017.2772896</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-3922-0989</orcidid><orcidid>https://orcid.org/0000-0001-9262-0407</orcidid><orcidid>https://orcid.org/0000-0002-7734-4077</orcidid><orcidid>https://orcid.org/0000-0002-7421-1711</orcidid><orcidid>https://orcid.org/0000-0002-6636-9738</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0278-0070 |
ispartof | IEEE transactions on computer-aided design of integrated circuits and systems, 2018-09, Vol.37 (9), p.1733-1746 |
issn | 0278-0070 1937-4151 |
language | eng |
recordid | cdi_proquest_journals_2117132187 |
source | IEEE Electronic Library (IEL) |
subjects | Approximate computation Batteries Computer simulation Computing time Degradation Energy Energy consumption hybrid energy systems Intelligent transportation systems Optimization Processors Program processors Quality of service quality of service (QoS) optimization Real time real-time multiprocessor system-on-chip (MPSoC) Real-time systems Task scheduling Uncertainty |
title | Cost-Constrained QoS Optimization for Approximate Computation Real-Time Tasks in Heterogeneous MPSoCs |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T15%3A01%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cost-Constrained%20QoS%20Optimization%20for%20Approximate%20Computation%20Real-Time%20Tasks%20in%20Heterogeneous%20MPSoCs&rft.jtitle=IEEE%20transactions%20on%20computer-aided%20design%20of%20integrated%20circuits%20and%20systems&rft.au=Tongquan%20Wei&rft.date=2018-09-01&rft.volume=37&rft.issue=9&rft.spage=1733&rft.epage=1746&rft.pages=1733-1746&rft.issn=0278-0070&rft.eissn=1937-4151&rft.coden=ITCSDI&rft_id=info:doi/10.1109/TCAD.2017.2772896&rft_dat=%3Cproquest_RIE%3E2117132187%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2117132187&rft_id=info:pmid/&rft_ieee_id=8105815&rfr_iscdi=true |