Cost-Constrained QoS Optimization for Approximate Computation Real-Time Tasks in Heterogeneous MPSoCs

Internet of Things devices, such as video-based detectors or road side units are being deployed in emerging applications like sustainable and intelligent transportation systems. Oftentimes, stringent operation and energy cost constraints are exerted on this type of applications, necessitating a hybr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on computer-aided design of integrated circuits and systems 2018-09, Vol.37 (9), p.1733-1746
Hauptverfasser: Tongquan Wei, Junlong Zhou, Kun Cao, Peijin Cong, Mingsong Chen, Gongxuan Zhang, Hu, Xiaobo Sharon, Jianming Yan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1746
container_issue 9
container_start_page 1733
container_title IEEE transactions on computer-aided design of integrated circuits and systems
container_volume 37
creator Tongquan Wei
Junlong Zhou
Kun Cao
Peijin Cong
Mingsong Chen
Gongxuan Zhang
Hu, Xiaobo Sharon
Jianming Yan
description Internet of Things devices, such as video-based detectors or road side units are being deployed in emerging applications like sustainable and intelligent transportation systems. Oftentimes, stringent operation and energy cost constraints are exerted on this type of applications, necessitating a hybrid supply of renewable and grid energy. The key issue of a cost-constrained hybrid of renewable and grid power is its uncertainty in energy availability. The characteristic of approximate computation that accepts an approximate result when energy is limited and executes more computations yielding better results if more energy is available, can be exploited to intelligently handle the uncertainty. In this paper, we first propose an energy-adaptive task allocation scheme that optimally assigns real-time approximate-computation tasks to individual processors and subsequently enables a matching of the cost-constrained hybrid supply of energy with the energy demand of the resultant task schedule. We then present a quality of service (QoS)-driven task scheduling scheme that determines the optional execution cycles of tasks on individual processors for optimization of system QoS. A dynamic task scheduling scheme is also designed to adapt at runtime the task execution to the varying amount of the available energy. Simulation results show that our schemes can reduce system energy consumption by up to 29% and improve system QoS by up to 108% as compared to benchmarking algorithms.
doi_str_mv 10.1109/TCAD.2017.2772896
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2117132187</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8105815</ieee_id><sourcerecordid>2117132187</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-ed6bfd00b6d1b015e1a85c9f9c47c0a21395abe42211cda4b112cea130cc56953</originalsourceid><addsrcrecordid>eNo9kMtOwzAQRS0EEqXwAYiNJdYpHieO42UVHkUqKtCyjhxnglLaONiOBHw9qYJYzWLOncch5BLYDICpm00-v51xBnLGpeSZSo_IBFQsowQEHJMJ4zKLGJPslJx5v2UMEsHVhGBufYhy2_rgdNNiRV_smq660OybHx0a29LaOjrvOme_mr0OSHO77_ow9l5R76JNs0e60f7D06alCwzo7Du2aHtPn57XNvfn5KTWO48Xf3VK3u7vNvkiWq4eHvP5MjJcxSHCKi3rirEyraBkIBB0JoyqlUmkYZpDrIQuMeEcwFQ6KQG4QQ0xM0akSsRTcj3OHa797NGHYmt71w4riyEiIeaQyYGCkTLOeu-wLjo3vOa-C2DFwWZxsFkcbBZ_NofM1ZhpEPGfz4CJDET8C_jJcW8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2117132187</pqid></control><display><type>article</type><title>Cost-Constrained QoS Optimization for Approximate Computation Real-Time Tasks in Heterogeneous MPSoCs</title><source>IEEE Electronic Library (IEL)</source><creator>Tongquan Wei ; Junlong Zhou ; Kun Cao ; Peijin Cong ; Mingsong Chen ; Gongxuan Zhang ; Hu, Xiaobo Sharon ; Jianming Yan</creator><creatorcontrib>Tongquan Wei ; Junlong Zhou ; Kun Cao ; Peijin Cong ; Mingsong Chen ; Gongxuan Zhang ; Hu, Xiaobo Sharon ; Jianming Yan</creatorcontrib><description>Internet of Things devices, such as video-based detectors or road side units are being deployed in emerging applications like sustainable and intelligent transportation systems. Oftentimes, stringent operation and energy cost constraints are exerted on this type of applications, necessitating a hybrid supply of renewable and grid energy. The key issue of a cost-constrained hybrid of renewable and grid power is its uncertainty in energy availability. The characteristic of approximate computation that accepts an approximate result when energy is limited and executes more computations yielding better results if more energy is available, can be exploited to intelligently handle the uncertainty. In this paper, we first propose an energy-adaptive task allocation scheme that optimally assigns real-time approximate-computation tasks to individual processors and subsequently enables a matching of the cost-constrained hybrid supply of energy with the energy demand of the resultant task schedule. We then present a quality of service (QoS)-driven task scheduling scheme that determines the optional execution cycles of tasks on individual processors for optimization of system QoS. A dynamic task scheduling scheme is also designed to adapt at runtime the task execution to the varying amount of the available energy. Simulation results show that our schemes can reduce system energy consumption by up to 29% and improve system QoS by up to 108% as compared to benchmarking algorithms.</description><identifier>ISSN: 0278-0070</identifier><identifier>EISSN: 1937-4151</identifier><identifier>DOI: 10.1109/TCAD.2017.2772896</identifier><identifier>CODEN: ITCSDI</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Approximate computation ; Batteries ; Computer simulation ; Computing time ; Degradation ; Energy ; Energy consumption ; hybrid energy systems ; Intelligent transportation systems ; Optimization ; Processors ; Program processors ; Quality of service ; quality of service (QoS) optimization ; Real time ; real-time multiprocessor system-on-chip (MPSoC) ; Real-time systems ; Task scheduling ; Uncertainty</subject><ispartof>IEEE transactions on computer-aided design of integrated circuits and systems, 2018-09, Vol.37 (9), p.1733-1746</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-ed6bfd00b6d1b015e1a85c9f9c47c0a21395abe42211cda4b112cea130cc56953</citedby><cites>FETCH-LOGICAL-c293t-ed6bfd00b6d1b015e1a85c9f9c47c0a21395abe42211cda4b112cea130cc56953</cites><orcidid>0000-0002-3922-0989 ; 0000-0001-9262-0407 ; 0000-0002-7734-4077 ; 0000-0002-7421-1711 ; 0000-0002-6636-9738</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8105815$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8105815$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Tongquan Wei</creatorcontrib><creatorcontrib>Junlong Zhou</creatorcontrib><creatorcontrib>Kun Cao</creatorcontrib><creatorcontrib>Peijin Cong</creatorcontrib><creatorcontrib>Mingsong Chen</creatorcontrib><creatorcontrib>Gongxuan Zhang</creatorcontrib><creatorcontrib>Hu, Xiaobo Sharon</creatorcontrib><creatorcontrib>Jianming Yan</creatorcontrib><title>Cost-Constrained QoS Optimization for Approximate Computation Real-Time Tasks in Heterogeneous MPSoCs</title><title>IEEE transactions on computer-aided design of integrated circuits and systems</title><addtitle>TCAD</addtitle><description>Internet of Things devices, such as video-based detectors or road side units are being deployed in emerging applications like sustainable and intelligent transportation systems. Oftentimes, stringent operation and energy cost constraints are exerted on this type of applications, necessitating a hybrid supply of renewable and grid energy. The key issue of a cost-constrained hybrid of renewable and grid power is its uncertainty in energy availability. The characteristic of approximate computation that accepts an approximate result when energy is limited and executes more computations yielding better results if more energy is available, can be exploited to intelligently handle the uncertainty. In this paper, we first propose an energy-adaptive task allocation scheme that optimally assigns real-time approximate-computation tasks to individual processors and subsequently enables a matching of the cost-constrained hybrid supply of energy with the energy demand of the resultant task schedule. We then present a quality of service (QoS)-driven task scheduling scheme that determines the optional execution cycles of tasks on individual processors for optimization of system QoS. A dynamic task scheduling scheme is also designed to adapt at runtime the task execution to the varying amount of the available energy. Simulation results show that our schemes can reduce system energy consumption by up to 29% and improve system QoS by up to 108% as compared to benchmarking algorithms.</description><subject>Approximate computation</subject><subject>Batteries</subject><subject>Computer simulation</subject><subject>Computing time</subject><subject>Degradation</subject><subject>Energy</subject><subject>Energy consumption</subject><subject>hybrid energy systems</subject><subject>Intelligent transportation systems</subject><subject>Optimization</subject><subject>Processors</subject><subject>Program processors</subject><subject>Quality of service</subject><subject>quality of service (QoS) optimization</subject><subject>Real time</subject><subject>real-time multiprocessor system-on-chip (MPSoC)</subject><subject>Real-time systems</subject><subject>Task scheduling</subject><subject>Uncertainty</subject><issn>0278-0070</issn><issn>1937-4151</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kMtOwzAQRS0EEqXwAYiNJdYpHieO42UVHkUqKtCyjhxnglLaONiOBHw9qYJYzWLOncch5BLYDICpm00-v51xBnLGpeSZSo_IBFQsowQEHJMJ4zKLGJPslJx5v2UMEsHVhGBufYhy2_rgdNNiRV_smq660OybHx0a29LaOjrvOme_mr0OSHO77_ow9l5R76JNs0e60f7D06alCwzo7Du2aHtPn57XNvfn5KTWO48Xf3VK3u7vNvkiWq4eHvP5MjJcxSHCKi3rirEyraBkIBB0JoyqlUmkYZpDrIQuMeEcwFQ6KQG4QQ0xM0akSsRTcj3OHa797NGHYmt71w4riyEiIeaQyYGCkTLOeu-wLjo3vOa-C2DFwWZxsFkcbBZ_NofM1ZhpEPGfz4CJDET8C_jJcW8</recordid><startdate>20180901</startdate><enddate>20180901</enddate><creator>Tongquan Wei</creator><creator>Junlong Zhou</creator><creator>Kun Cao</creator><creator>Peijin Cong</creator><creator>Mingsong Chen</creator><creator>Gongxuan Zhang</creator><creator>Hu, Xiaobo Sharon</creator><creator>Jianming Yan</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-3922-0989</orcidid><orcidid>https://orcid.org/0000-0001-9262-0407</orcidid><orcidid>https://orcid.org/0000-0002-7734-4077</orcidid><orcidid>https://orcid.org/0000-0002-7421-1711</orcidid><orcidid>https://orcid.org/0000-0002-6636-9738</orcidid></search><sort><creationdate>20180901</creationdate><title>Cost-Constrained QoS Optimization for Approximate Computation Real-Time Tasks in Heterogeneous MPSoCs</title><author>Tongquan Wei ; Junlong Zhou ; Kun Cao ; Peijin Cong ; Mingsong Chen ; Gongxuan Zhang ; Hu, Xiaobo Sharon ; Jianming Yan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-ed6bfd00b6d1b015e1a85c9f9c47c0a21395abe42211cda4b112cea130cc56953</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Approximate computation</topic><topic>Batteries</topic><topic>Computer simulation</topic><topic>Computing time</topic><topic>Degradation</topic><topic>Energy</topic><topic>Energy consumption</topic><topic>hybrid energy systems</topic><topic>Intelligent transportation systems</topic><topic>Optimization</topic><topic>Processors</topic><topic>Program processors</topic><topic>Quality of service</topic><topic>quality of service (QoS) optimization</topic><topic>Real time</topic><topic>real-time multiprocessor system-on-chip (MPSoC)</topic><topic>Real-time systems</topic><topic>Task scheduling</topic><topic>Uncertainty</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tongquan Wei</creatorcontrib><creatorcontrib>Junlong Zhou</creatorcontrib><creatorcontrib>Kun Cao</creatorcontrib><creatorcontrib>Peijin Cong</creatorcontrib><creatorcontrib>Mingsong Chen</creatorcontrib><creatorcontrib>Gongxuan Zhang</creatorcontrib><creatorcontrib>Hu, Xiaobo Sharon</creatorcontrib><creatorcontrib>Jianming Yan</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on computer-aided design of integrated circuits and systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Tongquan Wei</au><au>Junlong Zhou</au><au>Kun Cao</au><au>Peijin Cong</au><au>Mingsong Chen</au><au>Gongxuan Zhang</au><au>Hu, Xiaobo Sharon</au><au>Jianming Yan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cost-Constrained QoS Optimization for Approximate Computation Real-Time Tasks in Heterogeneous MPSoCs</atitle><jtitle>IEEE transactions on computer-aided design of integrated circuits and systems</jtitle><stitle>TCAD</stitle><date>2018-09-01</date><risdate>2018</risdate><volume>37</volume><issue>9</issue><spage>1733</spage><epage>1746</epage><pages>1733-1746</pages><issn>0278-0070</issn><eissn>1937-4151</eissn><coden>ITCSDI</coden><abstract>Internet of Things devices, such as video-based detectors or road side units are being deployed in emerging applications like sustainable and intelligent transportation systems. Oftentimes, stringent operation and energy cost constraints are exerted on this type of applications, necessitating a hybrid supply of renewable and grid energy. The key issue of a cost-constrained hybrid of renewable and grid power is its uncertainty in energy availability. The characteristic of approximate computation that accepts an approximate result when energy is limited and executes more computations yielding better results if more energy is available, can be exploited to intelligently handle the uncertainty. In this paper, we first propose an energy-adaptive task allocation scheme that optimally assigns real-time approximate-computation tasks to individual processors and subsequently enables a matching of the cost-constrained hybrid supply of energy with the energy demand of the resultant task schedule. We then present a quality of service (QoS)-driven task scheduling scheme that determines the optional execution cycles of tasks on individual processors for optimization of system QoS. A dynamic task scheduling scheme is also designed to adapt at runtime the task execution to the varying amount of the available energy. Simulation results show that our schemes can reduce system energy consumption by up to 29% and improve system QoS by up to 108% as compared to benchmarking algorithms.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TCAD.2017.2772896</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-3922-0989</orcidid><orcidid>https://orcid.org/0000-0001-9262-0407</orcidid><orcidid>https://orcid.org/0000-0002-7734-4077</orcidid><orcidid>https://orcid.org/0000-0002-7421-1711</orcidid><orcidid>https://orcid.org/0000-0002-6636-9738</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0278-0070
ispartof IEEE transactions on computer-aided design of integrated circuits and systems, 2018-09, Vol.37 (9), p.1733-1746
issn 0278-0070
1937-4151
language eng
recordid cdi_proquest_journals_2117132187
source IEEE Electronic Library (IEL)
subjects Approximate computation
Batteries
Computer simulation
Computing time
Degradation
Energy
Energy consumption
hybrid energy systems
Intelligent transportation systems
Optimization
Processors
Program processors
Quality of service
quality of service (QoS) optimization
Real time
real-time multiprocessor system-on-chip (MPSoC)
Real-time systems
Task scheduling
Uncertainty
title Cost-Constrained QoS Optimization for Approximate Computation Real-Time Tasks in Heterogeneous MPSoCs
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T15%3A01%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cost-Constrained%20QoS%20Optimization%20for%20Approximate%20Computation%20Real-Time%20Tasks%20in%20Heterogeneous%20MPSoCs&rft.jtitle=IEEE%20transactions%20on%20computer-aided%20design%20of%20integrated%20circuits%20and%20systems&rft.au=Tongquan%20Wei&rft.date=2018-09-01&rft.volume=37&rft.issue=9&rft.spage=1733&rft.epage=1746&rft.pages=1733-1746&rft.issn=0278-0070&rft.eissn=1937-4151&rft.coden=ITCSDI&rft_id=info:doi/10.1109/TCAD.2017.2772896&rft_dat=%3Cproquest_RIE%3E2117132187%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2117132187&rft_id=info:pmid/&rft_ieee_id=8105815&rfr_iscdi=true