Optimization of } Plateau for Deep-Oxide Trench SOI Lateral IGBT During Inductive Load Turn-OFF
Collector-emitter voltage ( {V}_{\textsf {CE}} ) plateau of the 500-V deep-oxide trench (DOT) silicon-on-insulator lateral insulated gate bipolar transistor (SOI-LIGBT) during inductive load turn-off is investigated and optimized for the first time in this paper, aiming to reduce the turn-off loss (...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on electron devices 2018-09, Vol.65 (9), p.3862-3868 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3868 |
---|---|
container_issue | 9 |
container_start_page | 3862 |
container_title | IEEE transactions on electron devices |
container_volume | 65 |
creator | Zhang, Long Zhu, Jing Cao, Shilin Ma, Jie Li, Shaohong Liu, Siyang Sun, Weifeng Zhao, Jianfeng Shi, Longxing |
description | Collector-emitter voltage ( {V}_{\textsf {CE}} ) plateau of the 500-V deep-oxide trench (DOT) silicon-on-insulator lateral insulated gate bipolar transistor (SOI-LIGBT) during inductive load turn-off is investigated and optimized for the first time in this paper, aiming to reduce the turn-off loss ( {E}_{ \mathrm{\scriptscriptstyle OFF}} ). The mechanism of {V}_{\textsf {CE}} plateau is revealed by TCAD simulation. In conventional DOT SOI-LIGBT, the large number of stored carries in the silicon region beneath the DOT (Region I) hinders the extension of depletion layer and slows down {V}_{\textsf {CE}} rising during turn-off, leading to a plateau phase. A novel DOT SOI-LIGBT with dual-controllable vertical field plates (CPFs) is proposed to shorten the {V}_{\textsf {CE}} plateau. The dual CPFs are arranged in the DOT and their electric potentials ( {V}_{\textsf {F} 1} and {V}_{\textsf {F} 2} ) are controlled through the connection with scrolled resistive polysilicon filed plate. By adjusting {V}_{\textsf {F} 1} and {V}_{\textsf {F} 2} , the accelerated depletion and extraction of stored carriers in Region I can be realized, resulting in a short {V}_{\mathbf {CE}} plateau duration. The {V}_{\mathbf {CE}} plateau duration can be decreased from 156 ns for the conventional SOI-LIGBT to 60 ns for the proposed SOI-LIGBT with {V}_{F1} = 0 V and {V}_{\textsf {F}2} = {0.5}\,\,{V}_{\textsf {CE}} . The proposed DOT SOI-LIGBT achieves an {E}_{ \mathrm{\scriptscriptstyle OFF}} |
doi_str_mv | 10.1109/TED.2018.2857838 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2117132161</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8423456</ieee_id><sourcerecordid>2117132161</sourcerecordid><originalsourceid>FETCH-LOGICAL-c206t-356a3292fa6f0911ae7df18cecf5187538a83199d44eeadda8c2d716ecf4ef93</originalsourceid><addsrcrecordid>eNo9kE1LxDAQhoMouK7eBS8Bz107SZqmR90vC4UK9h5CM9Euu-2atqKC_90su3gahnnemeEh5BbiGUCcPVTLxYzFoGZMJani6oxMIEnSKJNCnpNJHEZRxhW_JFd9vwmtFIJNiC73Q7NrfszQdC3tHP2lL1szoBmp6zxdIO6j8quxSCuPbf1OX8ucFgHwZkvz9VNFF6Nv2jeat3ash-YTadEZS6vRt1G5Wl2TC2e2Pd6c6pRUq2U1f46Kcp3PH4uoZrEcIp5Iw1nGnJEuzgAMptaBqrF2Cag04cooDllmhUA01hpVM5uCDHOBLuNTcn9cu_fdx4j9oDdd-CBc1AwgBc5AQqDiI1X7ru89Or33zc74bw2xPljUwaI-WNQniyFyd4w0iPiPK8G4SCT_A5KibKQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2117132161</pqid></control><display><type>article</type><title>Optimization of } Plateau for Deep-Oxide Trench SOI Lateral IGBT During Inductive Load Turn-OFF</title><source>IEEE Electronic Library (IEL)</source><creator>Zhang, Long ; Zhu, Jing ; Cao, Shilin ; Ma, Jie ; Li, Shaohong ; Liu, Siyang ; Sun, Weifeng ; Zhao, Jianfeng ; Shi, Longxing</creator><creatorcontrib>Zhang, Long ; Zhu, Jing ; Cao, Shilin ; Ma, Jie ; Li, Shaohong ; Liu, Siyang ; Sun, Weifeng ; Zhao, Jianfeng ; Shi, Longxing</creatorcontrib><description><![CDATA[Collector-emitter voltage (<inline-formula> <tex-math notation="LaTeX">{V}_{\textsf {CE}} </tex-math></inline-formula>) plateau of the 500-V deep-oxide trench (DOT) silicon-on-insulator lateral insulated gate bipolar transistor (SOI-LIGBT) during inductive load turn-off is investigated and optimized for the first time in this paper, aiming to reduce the turn-off loss (<inline-formula> <tex-math notation="LaTeX">{E}_{ \mathrm{\scriptscriptstyle OFF}} </tex-math></inline-formula>). The mechanism of <inline-formula> <tex-math notation="LaTeX">{V}_{\textsf {CE}} </tex-math></inline-formula> plateau is revealed by TCAD simulation. In conventional DOT SOI-LIGBT, the large number of stored carries in the silicon region beneath the DOT (Region I) hinders the extension of depletion layer and slows down <inline-formula> <tex-math notation="LaTeX">{V}_{\textsf {CE}} </tex-math></inline-formula> rising during turn-off, leading to a plateau phase. A novel DOT SOI-LIGBT with dual-controllable vertical field plates (CPFs) is proposed to shorten the <inline-formula> <tex-math notation="LaTeX">{V}_{\textsf {CE}} </tex-math></inline-formula> plateau. The dual CPFs are arranged in the DOT and their electric potentials (<inline-formula> <tex-math notation="LaTeX">{V}_{\textsf {F} 1} </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">{V}_{\textsf {F} 2} </tex-math></inline-formula>) are controlled through the connection with scrolled resistive polysilicon filed plate. By adjusting <inline-formula> <tex-math notation="LaTeX">{V}_{\textsf {F} 1} </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">{V}_{\textsf {F} 2} </tex-math></inline-formula>, the accelerated depletion and extraction of stored carriers in Region I can be realized, resulting in a short <inline-formula> <tex-math notation="LaTeX">{V}_{\mathbf {CE}} </tex-math></inline-formula> plateau duration. The <inline-formula> <tex-math notation="LaTeX">{V}_{\mathbf {CE}} </tex-math></inline-formula> plateau duration can be decreased from 156 ns for the conventional SOI-LIGBT to 60 ns for the proposed SOI-LIGBT with <inline-formula> <tex-math notation="LaTeX">{V}_{F1} = 0 </tex-math></inline-formula> V and <inline-formula> <tex-math notation="LaTeX">{V}_{\textsf {F}2} = {0.5}\,\,{V}_{\textsf {CE}} </tex-math></inline-formula>. The proposed DOT SOI-LIGBT achieves an <inline-formula> <tex-math notation="LaTeX">{E}_{ \mathrm{\scriptscriptstyle OFF}} </tex-math></inline-formula> 59.2% lower than the conventional DOT SOI-LIGBT at the same <inline-formula> <tex-math notation="LaTeX">{V}_{ \mathrm{\scriptscriptstyle ON}} </tex-math></inline-formula> of 2.96 V.]]></description><identifier>ISSN: 0018-9383</identifier><identifier>EISSN: 1557-9646</identifier><identifier>DOI: 10.1109/TED.2018.2857838</identifier><identifier>CODEN: IETDAI</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Breakdown voltage (BV) ; deep-oxide trench (DOT) ; Depletion ; Electric potential ; Emitters ; Insulated gate bipolar transistors ; Integrated circuit modeling ; Load modeling ; Periodic structures ; Silicon ; Silicon-on-insulator ; silicon-on-insulator lateral insulated gate bipolar transistor (SOI-LIGBT) ; SOI (semiconductors) ; Stability ; turn-off loss (<italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">E off) ; US Department of Transportation ; vertical field plate</subject><ispartof>IEEE transactions on electron devices, 2018-09, Vol.65 (9), p.3862-3868</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c206t-356a3292fa6f0911ae7df18cecf5187538a83199d44eeadda8c2d716ecf4ef93</citedby><cites>FETCH-LOGICAL-c206t-356a3292fa6f0911ae7df18cecf5187538a83199d44eeadda8c2d716ecf4ef93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8423456$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,778,782,794,27911,27912,54745</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8423456$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zhang, Long</creatorcontrib><creatorcontrib>Zhu, Jing</creatorcontrib><creatorcontrib>Cao, Shilin</creatorcontrib><creatorcontrib>Ma, Jie</creatorcontrib><creatorcontrib>Li, Shaohong</creatorcontrib><creatorcontrib>Liu, Siyang</creatorcontrib><creatorcontrib>Sun, Weifeng</creatorcontrib><creatorcontrib>Zhao, Jianfeng</creatorcontrib><creatorcontrib>Shi, Longxing</creatorcontrib><title>Optimization of } Plateau for Deep-Oxide Trench SOI Lateral IGBT During Inductive Load Turn-OFF</title><title>IEEE transactions on electron devices</title><addtitle>TED</addtitle><description><![CDATA[Collector-emitter voltage (<inline-formula> <tex-math notation="LaTeX">{V}_{\textsf {CE}} </tex-math></inline-formula>) plateau of the 500-V deep-oxide trench (DOT) silicon-on-insulator lateral insulated gate bipolar transistor (SOI-LIGBT) during inductive load turn-off is investigated and optimized for the first time in this paper, aiming to reduce the turn-off loss (<inline-formula> <tex-math notation="LaTeX">{E}_{ \mathrm{\scriptscriptstyle OFF}} </tex-math></inline-formula>). The mechanism of <inline-formula> <tex-math notation="LaTeX">{V}_{\textsf {CE}} </tex-math></inline-formula> plateau is revealed by TCAD simulation. In conventional DOT SOI-LIGBT, the large number of stored carries in the silicon region beneath the DOT (Region I) hinders the extension of depletion layer and slows down <inline-formula> <tex-math notation="LaTeX">{V}_{\textsf {CE}} </tex-math></inline-formula> rising during turn-off, leading to a plateau phase. A novel DOT SOI-LIGBT with dual-controllable vertical field plates (CPFs) is proposed to shorten the <inline-formula> <tex-math notation="LaTeX">{V}_{\textsf {CE}} </tex-math></inline-formula> plateau. The dual CPFs are arranged in the DOT and their electric potentials (<inline-formula> <tex-math notation="LaTeX">{V}_{\textsf {F} 1} </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">{V}_{\textsf {F} 2} </tex-math></inline-formula>) are controlled through the connection with scrolled resistive polysilicon filed plate. By adjusting <inline-formula> <tex-math notation="LaTeX">{V}_{\textsf {F} 1} </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">{V}_{\textsf {F} 2} </tex-math></inline-formula>, the accelerated depletion and extraction of stored carriers in Region I can be realized, resulting in a short <inline-formula> <tex-math notation="LaTeX">{V}_{\mathbf {CE}} </tex-math></inline-formula> plateau duration. The <inline-formula> <tex-math notation="LaTeX">{V}_{\mathbf {CE}} </tex-math></inline-formula> plateau duration can be decreased from 156 ns for the conventional SOI-LIGBT to 60 ns for the proposed SOI-LIGBT with <inline-formula> <tex-math notation="LaTeX">{V}_{F1} = 0 </tex-math></inline-formula> V and <inline-formula> <tex-math notation="LaTeX">{V}_{\textsf {F}2} = {0.5}\,\,{V}_{\textsf {CE}} </tex-math></inline-formula>. The proposed DOT SOI-LIGBT achieves an <inline-formula> <tex-math notation="LaTeX">{E}_{ \mathrm{\scriptscriptstyle OFF}} </tex-math></inline-formula> 59.2% lower than the conventional DOT SOI-LIGBT at the same <inline-formula> <tex-math notation="LaTeX">{V}_{ \mathrm{\scriptscriptstyle ON}} </tex-math></inline-formula> of 2.96 V.]]></description><subject>Breakdown voltage (BV)</subject><subject>deep-oxide trench (DOT)</subject><subject>Depletion</subject><subject>Electric potential</subject><subject>Emitters</subject><subject>Insulated gate bipolar transistors</subject><subject>Integrated circuit modeling</subject><subject>Load modeling</subject><subject>Periodic structures</subject><subject>Silicon</subject><subject>Silicon-on-insulator</subject><subject>silicon-on-insulator lateral insulated gate bipolar transistor (SOI-LIGBT)</subject><subject>SOI (semiconductors)</subject><subject>Stability</subject><subject>turn-off loss (<italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">E off)</subject><subject>US Department of Transportation</subject><subject>vertical field plate</subject><issn>0018-9383</issn><issn>1557-9646</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1LxDAQhoMouK7eBS8Bz107SZqmR90vC4UK9h5CM9Euu-2atqKC_90su3gahnnemeEh5BbiGUCcPVTLxYzFoGZMJani6oxMIEnSKJNCnpNJHEZRxhW_JFd9vwmtFIJNiC73Q7NrfszQdC3tHP2lL1szoBmp6zxdIO6j8quxSCuPbf1OX8ucFgHwZkvz9VNFF6Nv2jeat3ash-YTadEZS6vRt1G5Wl2TC2e2Pd6c6pRUq2U1f46Kcp3PH4uoZrEcIp5Iw1nGnJEuzgAMptaBqrF2Cag04cooDllmhUA01hpVM5uCDHOBLuNTcn9cu_fdx4j9oDdd-CBc1AwgBc5AQqDiI1X7ru89Or33zc74bw2xPljUwaI-WNQniyFyd4w0iPiPK8G4SCT_A5KibKQ</recordid><startdate>20180901</startdate><enddate>20180901</enddate><creator>Zhang, Long</creator><creator>Zhu, Jing</creator><creator>Cao, Shilin</creator><creator>Ma, Jie</creator><creator>Li, Shaohong</creator><creator>Liu, Siyang</creator><creator>Sun, Weifeng</creator><creator>Zhao, Jianfeng</creator><creator>Shi, Longxing</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>20180901</creationdate><title>Optimization of } Plateau for Deep-Oxide Trench SOI Lateral IGBT During Inductive Load Turn-OFF</title><author>Zhang, Long ; Zhu, Jing ; Cao, Shilin ; Ma, Jie ; Li, Shaohong ; Liu, Siyang ; Sun, Weifeng ; Zhao, Jianfeng ; Shi, Longxing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c206t-356a3292fa6f0911ae7df18cecf5187538a83199d44eeadda8c2d716ecf4ef93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Breakdown voltage (BV)</topic><topic>deep-oxide trench (DOT)</topic><topic>Depletion</topic><topic>Electric potential</topic><topic>Emitters</topic><topic>Insulated gate bipolar transistors</topic><topic>Integrated circuit modeling</topic><topic>Load modeling</topic><topic>Periodic structures</topic><topic>Silicon</topic><topic>Silicon-on-insulator</topic><topic>silicon-on-insulator lateral insulated gate bipolar transistor (SOI-LIGBT)</topic><topic>SOI (semiconductors)</topic><topic>Stability</topic><topic>turn-off loss (<italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">E off)</topic><topic>US Department of Transportation</topic><topic>vertical field plate</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Long</creatorcontrib><creatorcontrib>Zhu, Jing</creatorcontrib><creatorcontrib>Cao, Shilin</creatorcontrib><creatorcontrib>Ma, Jie</creatorcontrib><creatorcontrib>Li, Shaohong</creatorcontrib><creatorcontrib>Liu, Siyang</creatorcontrib><creatorcontrib>Sun, Weifeng</creatorcontrib><creatorcontrib>Zhao, Jianfeng</creatorcontrib><creatorcontrib>Shi, Longxing</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on electron devices</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhang, Long</au><au>Zhu, Jing</au><au>Cao, Shilin</au><au>Ma, Jie</au><au>Li, Shaohong</au><au>Liu, Siyang</au><au>Sun, Weifeng</au><au>Zhao, Jianfeng</au><au>Shi, Longxing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimization of } Plateau for Deep-Oxide Trench SOI Lateral IGBT During Inductive Load Turn-OFF</atitle><jtitle>IEEE transactions on electron devices</jtitle><stitle>TED</stitle><date>2018-09-01</date><risdate>2018</risdate><volume>65</volume><issue>9</issue><spage>3862</spage><epage>3868</epage><pages>3862-3868</pages><issn>0018-9383</issn><eissn>1557-9646</eissn><coden>IETDAI</coden><abstract><![CDATA[Collector-emitter voltage (<inline-formula> <tex-math notation="LaTeX">{V}_{\textsf {CE}} </tex-math></inline-formula>) plateau of the 500-V deep-oxide trench (DOT) silicon-on-insulator lateral insulated gate bipolar transistor (SOI-LIGBT) during inductive load turn-off is investigated and optimized for the first time in this paper, aiming to reduce the turn-off loss (<inline-formula> <tex-math notation="LaTeX">{E}_{ \mathrm{\scriptscriptstyle OFF}} </tex-math></inline-formula>). The mechanism of <inline-formula> <tex-math notation="LaTeX">{V}_{\textsf {CE}} </tex-math></inline-formula> plateau is revealed by TCAD simulation. In conventional DOT SOI-LIGBT, the large number of stored carries in the silicon region beneath the DOT (Region I) hinders the extension of depletion layer and slows down <inline-formula> <tex-math notation="LaTeX">{V}_{\textsf {CE}} </tex-math></inline-formula> rising during turn-off, leading to a plateau phase. A novel DOT SOI-LIGBT with dual-controllable vertical field plates (CPFs) is proposed to shorten the <inline-formula> <tex-math notation="LaTeX">{V}_{\textsf {CE}} </tex-math></inline-formula> plateau. The dual CPFs are arranged in the DOT and their electric potentials (<inline-formula> <tex-math notation="LaTeX">{V}_{\textsf {F} 1} </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">{V}_{\textsf {F} 2} </tex-math></inline-formula>) are controlled through the connection with scrolled resistive polysilicon filed plate. By adjusting <inline-formula> <tex-math notation="LaTeX">{V}_{\textsf {F} 1} </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">{V}_{\textsf {F} 2} </tex-math></inline-formula>, the accelerated depletion and extraction of stored carriers in Region I can be realized, resulting in a short <inline-formula> <tex-math notation="LaTeX">{V}_{\mathbf {CE}} </tex-math></inline-formula> plateau duration. The <inline-formula> <tex-math notation="LaTeX">{V}_{\mathbf {CE}} </tex-math></inline-formula> plateau duration can be decreased from 156 ns for the conventional SOI-LIGBT to 60 ns for the proposed SOI-LIGBT with <inline-formula> <tex-math notation="LaTeX">{V}_{F1} = 0 </tex-math></inline-formula> V and <inline-formula> <tex-math notation="LaTeX">{V}_{\textsf {F}2} = {0.5}\,\,{V}_{\textsf {CE}} </tex-math></inline-formula>. The proposed DOT SOI-LIGBT achieves an <inline-formula> <tex-math notation="LaTeX">{E}_{ \mathrm{\scriptscriptstyle OFF}} </tex-math></inline-formula> 59.2% lower than the conventional DOT SOI-LIGBT at the same <inline-formula> <tex-math notation="LaTeX">{V}_{ \mathrm{\scriptscriptstyle ON}} </tex-math></inline-formula> of 2.96 V.]]></abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TED.2018.2857838</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9383 |
ispartof | IEEE transactions on electron devices, 2018-09, Vol.65 (9), p.3862-3868 |
issn | 0018-9383 1557-9646 |
language | eng |
recordid | cdi_proquest_journals_2117132161 |
source | IEEE Electronic Library (IEL) |
subjects | Breakdown voltage (BV) deep-oxide trench (DOT) Depletion Electric potential Emitters Insulated gate bipolar transistors Integrated circuit modeling Load modeling Periodic structures Silicon Silicon-on-insulator silicon-on-insulator lateral insulated gate bipolar transistor (SOI-LIGBT) SOI (semiconductors) Stability turn-off loss (<italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">E off) US Department of Transportation vertical field plate |
title | Optimization of } Plateau for Deep-Oxide Trench SOI Lateral IGBT During Inductive Load Turn-OFF |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T19%3A59%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimization%20of%20%7D%20Plateau%20for%20Deep-Oxide%20Trench%20SOI%20Lateral%20IGBT%20During%20Inductive%20Load%20Turn-OFF&rft.jtitle=IEEE%20transactions%20on%20electron%20devices&rft.au=Zhang,%20Long&rft.date=2018-09-01&rft.volume=65&rft.issue=9&rft.spage=3862&rft.epage=3868&rft.pages=3862-3868&rft.issn=0018-9383&rft.eissn=1557-9646&rft.coden=IETDAI&rft_id=info:doi/10.1109/TED.2018.2857838&rft_dat=%3Cproquest_RIE%3E2117132161%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2117132161&rft_id=info:pmid/&rft_ieee_id=8423456&rfr_iscdi=true |