An Intelligent Fault Diagnosis Architecture for Electrical Fused Magnesia Furnace Using Sound Spectrum Submanifold Analysis
The temperature and pressure of electrical fused magnesia furnace (EFMF) are hard to obtain because the EFMF cannot be monitored effectively. Experts familiar with EFMF can determine its status by listening to its sound. In our work, we propose an intelligent architecture that can learn the experts&...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on instrumentation and measurement 2018-09, Vol.67 (9), p.2014-2023 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2023 |
---|---|
container_issue | 9 |
container_start_page | 2014 |
container_title | IEEE transactions on instrumentation and measurement |
container_volume | 67 |
creator | Du, Wenyou Zhou, Wei |
description | The temperature and pressure of electrical fused magnesia furnace (EFMF) are hard to obtain because the EFMF cannot be monitored effectively. Experts familiar with EFMF can determine its status by listening to its sound. In our work, we propose an intelligent architecture that can learn the experts' knowledge. Sound waveform is first transformed into the power spectrum density (PSD), and then the Laplacian score algorithm is used to select key frequencies. Next, a one-class support vector machine (SVM) is employed to find the minimum boundary of the submanifold of normal sound PSD. The distance of the sample to the classification hyperplane in kernel feature space is proposed to indicate the magnitude of faults. Lastly, the binary SVM is used to identify fault types. We have developed an instrument to acquire the sound of EFMF; experimental results using this data have shown the effectiveness of our proposed architecture. Additionally, the proposed architecture can be performed easily on the instrument for online monitoring. |
doi_str_mv | 10.1109/TIM.2018.2813841 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2117122883</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8327604</ieee_id><sourcerecordid>2117122883</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-5bfe8200f64f988115acba40079cf22467075d59a5cd44d2e8b0d3db0befe2c13</originalsourceid><addsrcrecordid>eNo9kMFLwzAUxoMoOKd3wUvAc2eSpm16LHPTwYaHbeeSpi8zI0tn0h6G_7wZG54eH-_3fbz3IfRMyYRSUr5tFqsJI1RMmKCp4PQGjWiWFUmZ5-wWjUhcJSXP8nv0EMKeEFLkvBih38rhhevBWrMD1-O5HGyP343cuS6YgCuvvk0Pqh88YN15PLNReKOkxfMhQItXEYVgZJTeSQV4G4zb4XU3uBavj2d6OOD10BykM7qzLa6ctKcY_ojutLQBnq5zjLbz2Wb6mSy_PhbTapkoVtI-yRoNghGic65LISjNpGokjx-USjPG84IUWZuVMlMt5y0D0ZA2bRvSgAamaDpGr5fco-9-Bgh9ve_Ot9pQM0oLypgQaaTIhVK-C8GDro_eHKQ_1ZTU54rrWHF9rri-VhwtLxeLAYB_XKSsyAlP_wDB4Xkq</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2117122883</pqid></control><display><type>article</type><title>An Intelligent Fault Diagnosis Architecture for Electrical Fused Magnesia Furnace Using Sound Spectrum Submanifold Analysis</title><source>IEEE Electronic Library (IEL)</source><creator>Du, Wenyou ; Zhou, Wei</creator><creatorcontrib>Du, Wenyou ; Zhou, Wei</creatorcontrib><description>The temperature and pressure of electrical fused magnesia furnace (EFMF) are hard to obtain because the EFMF cannot be monitored effectively. Experts familiar with EFMF can determine its status by listening to its sound. In our work, we propose an intelligent architecture that can learn the experts' knowledge. Sound waveform is first transformed into the power spectrum density (PSD), and then the Laplacian score algorithm is used to select key frequencies. Next, a one-class support vector machine (SVM) is employed to find the minimum boundary of the submanifold of normal sound PSD. The distance of the sample to the classification hyperplane in kernel feature space is proposed to indicate the magnitude of faults. Lastly, the binary SVM is used to identify fault types. We have developed an instrument to acquire the sound of EFMF; experimental results using this data have shown the effectiveness of our proposed architecture. Additionally, the proposed architecture can be performed easily on the instrument for online monitoring.</description><identifier>ISSN: 0018-9456</identifier><identifier>EISSN: 1557-9662</identifier><identifier>DOI: 10.1109/TIM.2018.2813841</identifier><identifier>CODEN: IEIMAO</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Architecture ; Electrical fused magnesia furnace (EFMF) ; Fault detection ; Fault diagnosis ; Feature extraction ; feature selection ; Furnaces ; Hyperplanes ; intelligent fault diagnosis ; Manifolds (mathematics) ; Monitoring ; one-class support vector machine (SVM) ; Sound ; submanifold ; Support vector machines ; Temperature ; Transforms</subject><ispartof>IEEE transactions on instrumentation and measurement, 2018-09, Vol.67 (9), p.2014-2023</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-5bfe8200f64f988115acba40079cf22467075d59a5cd44d2e8b0d3db0befe2c13</citedby><cites>FETCH-LOGICAL-c291t-5bfe8200f64f988115acba40079cf22467075d59a5cd44d2e8b0d3db0befe2c13</cites><orcidid>0000-0002-5931-3197 ; 0000-0002-8457-8103</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8327604$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8327604$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Du, Wenyou</creatorcontrib><creatorcontrib>Zhou, Wei</creatorcontrib><title>An Intelligent Fault Diagnosis Architecture for Electrical Fused Magnesia Furnace Using Sound Spectrum Submanifold Analysis</title><title>IEEE transactions on instrumentation and measurement</title><addtitle>TIM</addtitle><description>The temperature and pressure of electrical fused magnesia furnace (EFMF) are hard to obtain because the EFMF cannot be monitored effectively. Experts familiar with EFMF can determine its status by listening to its sound. In our work, we propose an intelligent architecture that can learn the experts' knowledge. Sound waveform is first transformed into the power spectrum density (PSD), and then the Laplacian score algorithm is used to select key frequencies. Next, a one-class support vector machine (SVM) is employed to find the minimum boundary of the submanifold of normal sound PSD. The distance of the sample to the classification hyperplane in kernel feature space is proposed to indicate the magnitude of faults. Lastly, the binary SVM is used to identify fault types. We have developed an instrument to acquire the sound of EFMF; experimental results using this data have shown the effectiveness of our proposed architecture. Additionally, the proposed architecture can be performed easily on the instrument for online monitoring.</description><subject>Architecture</subject><subject>Electrical fused magnesia furnace (EFMF)</subject><subject>Fault detection</subject><subject>Fault diagnosis</subject><subject>Feature extraction</subject><subject>feature selection</subject><subject>Furnaces</subject><subject>Hyperplanes</subject><subject>intelligent fault diagnosis</subject><subject>Manifolds (mathematics)</subject><subject>Monitoring</subject><subject>one-class support vector machine (SVM)</subject><subject>Sound</subject><subject>submanifold</subject><subject>Support vector machines</subject><subject>Temperature</subject><subject>Transforms</subject><issn>0018-9456</issn><issn>1557-9662</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kMFLwzAUxoMoOKd3wUvAc2eSpm16LHPTwYaHbeeSpi8zI0tn0h6G_7wZG54eH-_3fbz3IfRMyYRSUr5tFqsJI1RMmKCp4PQGjWiWFUmZ5-wWjUhcJSXP8nv0EMKeEFLkvBih38rhhevBWrMD1-O5HGyP343cuS6YgCuvvk0Pqh88YN15PLNReKOkxfMhQItXEYVgZJTeSQV4G4zb4XU3uBavj2d6OOD10BykM7qzLa6ctKcY_ojutLQBnq5zjLbz2Wb6mSy_PhbTapkoVtI-yRoNghGic65LISjNpGokjx-USjPG84IUWZuVMlMt5y0D0ZA2bRvSgAamaDpGr5fco-9-Bgh9ve_Ot9pQM0oLypgQaaTIhVK-C8GDro_eHKQ_1ZTU54rrWHF9rri-VhwtLxeLAYB_XKSsyAlP_wDB4Xkq</recordid><startdate>20180901</startdate><enddate>20180901</enddate><creator>Du, Wenyou</creator><creator>Zhou, Wei</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-5931-3197</orcidid><orcidid>https://orcid.org/0000-0002-8457-8103</orcidid></search><sort><creationdate>20180901</creationdate><title>An Intelligent Fault Diagnosis Architecture for Electrical Fused Magnesia Furnace Using Sound Spectrum Submanifold Analysis</title><author>Du, Wenyou ; Zhou, Wei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-5bfe8200f64f988115acba40079cf22467075d59a5cd44d2e8b0d3db0befe2c13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Architecture</topic><topic>Electrical fused magnesia furnace (EFMF)</topic><topic>Fault detection</topic><topic>Fault diagnosis</topic><topic>Feature extraction</topic><topic>feature selection</topic><topic>Furnaces</topic><topic>Hyperplanes</topic><topic>intelligent fault diagnosis</topic><topic>Manifolds (mathematics)</topic><topic>Monitoring</topic><topic>one-class support vector machine (SVM)</topic><topic>Sound</topic><topic>submanifold</topic><topic>Support vector machines</topic><topic>Temperature</topic><topic>Transforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Du, Wenyou</creatorcontrib><creatorcontrib>Zhou, Wei</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on instrumentation and measurement</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Du, Wenyou</au><au>Zhou, Wei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Intelligent Fault Diagnosis Architecture for Electrical Fused Magnesia Furnace Using Sound Spectrum Submanifold Analysis</atitle><jtitle>IEEE transactions on instrumentation and measurement</jtitle><stitle>TIM</stitle><date>2018-09-01</date><risdate>2018</risdate><volume>67</volume><issue>9</issue><spage>2014</spage><epage>2023</epage><pages>2014-2023</pages><issn>0018-9456</issn><eissn>1557-9662</eissn><coden>IEIMAO</coden><abstract>The temperature and pressure of electrical fused magnesia furnace (EFMF) are hard to obtain because the EFMF cannot be monitored effectively. Experts familiar with EFMF can determine its status by listening to its sound. In our work, we propose an intelligent architecture that can learn the experts' knowledge. Sound waveform is first transformed into the power spectrum density (PSD), and then the Laplacian score algorithm is used to select key frequencies. Next, a one-class support vector machine (SVM) is employed to find the minimum boundary of the submanifold of normal sound PSD. The distance of the sample to the classification hyperplane in kernel feature space is proposed to indicate the magnitude of faults. Lastly, the binary SVM is used to identify fault types. We have developed an instrument to acquire the sound of EFMF; experimental results using this data have shown the effectiveness of our proposed architecture. Additionally, the proposed architecture can be performed easily on the instrument for online monitoring.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIM.2018.2813841</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-5931-3197</orcidid><orcidid>https://orcid.org/0000-0002-8457-8103</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9456 |
ispartof | IEEE transactions on instrumentation and measurement, 2018-09, Vol.67 (9), p.2014-2023 |
issn | 0018-9456 1557-9662 |
language | eng |
recordid | cdi_proquest_journals_2117122883 |
source | IEEE Electronic Library (IEL) |
subjects | Architecture Electrical fused magnesia furnace (EFMF) Fault detection Fault diagnosis Feature extraction feature selection Furnaces Hyperplanes intelligent fault diagnosis Manifolds (mathematics) Monitoring one-class support vector machine (SVM) Sound submanifold Support vector machines Temperature Transforms |
title | An Intelligent Fault Diagnosis Architecture for Electrical Fused Magnesia Furnace Using Sound Spectrum Submanifold Analysis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T21%3A15%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Intelligent%20Fault%20Diagnosis%20Architecture%20for%20Electrical%20Fused%20Magnesia%20Furnace%20Using%20Sound%20Spectrum%20Submanifold%20Analysis&rft.jtitle=IEEE%20transactions%20on%20instrumentation%20and%20measurement&rft.au=Du,%20Wenyou&rft.date=2018-09-01&rft.volume=67&rft.issue=9&rft.spage=2014&rft.epage=2023&rft.pages=2014-2023&rft.issn=0018-9456&rft.eissn=1557-9662&rft.coden=IEIMAO&rft_id=info:doi/10.1109/TIM.2018.2813841&rft_dat=%3Cproquest_RIE%3E2117122883%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2117122883&rft_id=info:pmid/&rft_ieee_id=8327604&rfr_iscdi=true |