Evaluation of Algorithms for Orientation Invariant Inertial Gait Matching
With the prevalent use of smart phones in sensitive applications, unobtrusive methods for continuously verifying the identity of the user have become critical. The embedded inertial sensors in these devices provide an opportunity to develop authentication processes based on behavioral biometrics suc...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on information forensics and security 2019-02, Vol.14 (2), p.304-318 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 318 |
---|---|
container_issue | 2 |
container_start_page | 304 |
container_title | IEEE transactions on information forensics and security |
container_volume | 14 |
creator | Subramanian, Ravichandran Sarkar, Sudeep |
description | With the prevalent use of smart phones in sensitive applications, unobtrusive methods for continuously verifying the identity of the user have become critical. The embedded inertial sensors in these devices provide an opportunity to develop authentication processes based on behavioral biometrics such as gait. However, one major obstacle is that the orientation of the device relative to the user is hard to control and difficult to determine reliably. This paper presents five methods: magnitude (MAG), principal component analysis (PCA), vector cross product (VCP), reduced gait dynamics image (rGDI), and Kabsch alignment (KAB) that make the authentication process independent of device orientation and hence improve the performance. The five methods are evaluated and compared on two large, publicly available, inertial gait datasets. The baseline (orientation dependent) average equal error rate (EER) when the device was freely oriented is 26.4%. The MAG, PCA, VCP, and rGDI methods reduce the average EER to approximately 23%. The Kabsch (KAB) method is more effective and reduces the average EER to 20.2%. |
doi_str_mv | 10.1109/TIFS.2018.2850032 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2117107978</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8395311</ieee_id><sourcerecordid>2117107978</sourcerecordid><originalsourceid>FETCH-LOGICAL-c336t-301621bc538e3408de52d9ee2fe22f2236c8da5006f69aebea80b04f8afa7a03</originalsourceid><addsrcrecordid>eNo9kE9rwkAQxZfSQq3tByi9BHqOndlNNpujiH8CFg_1voxxV1diYjer0G_fSMTTPJj3Zng_xt4RRoiQf62L2c-IA6oRVymA4A9sgGkqYwkcH-8axTN7adsDQJKgVANWTC9UnSm4po4aG42rXeNd2B_byDY-Wnln6tBvi_pC3lEdOmV8cFRFc3Ih-qZQ7l29e2VPlqrWvN3mkK1n0_VkES9X82IyXsalEDLEAlBy3JSpUEYkoLYm5dvcGG4N55ZzIUu1pa6CtDInszGkYAOJVWQpIxBD9tmfPfnm92zaoA_N2dfdR80RM4Qsz1Tnwt5V-qZtvbH65N2R_J9G0Fdg-gpMX4HpG7Au89FnnDHm7lciTwWi-AeYD2b_</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2117107978</pqid></control><display><type>article</type><title>Evaluation of Algorithms for Orientation Invariant Inertial Gait Matching</title><source>IEEE Electronic Library (IEL)</source><creator>Subramanian, Ravichandran ; Sarkar, Sudeep</creator><creatorcontrib>Subramanian, Ravichandran ; Sarkar, Sudeep</creatorcontrib><description>With the prevalent use of smart phones in sensitive applications, unobtrusive methods for continuously verifying the identity of the user have become critical. The embedded inertial sensors in these devices provide an opportunity to develop authentication processes based on behavioral biometrics such as gait. However, one major obstacle is that the orientation of the device relative to the user is hard to control and difficult to determine reliably. This paper presents five methods: magnitude (MAG), principal component analysis (PCA), vector cross product (VCP), reduced gait dynamics image (rGDI), and Kabsch alignment (KAB) that make the authentication process independent of device orientation and hence improve the performance. The five methods are evaluated and compared on two large, publicly available, inertial gait datasets. The baseline (orientation dependent) average equal error rate (EER) when the device was freely oriented is 26.4%. The MAG, PCA, VCP, and rGDI methods reduce the average EER to approximately 23%. The Kabsch (KAB) method is more effective and reduces the average EER to 20.2%.</description><identifier>ISSN: 1556-6013</identifier><identifier>EISSN: 1556-6021</identifier><identifier>DOI: 10.1109/TIFS.2018.2850032</identifier><identifier>CODEN: ITIFA6</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Approximation ; Authentication ; Biometrics ; Biometrics (access control) ; Cameras ; Gait ; Inertial sensing devices ; inertial sensors ; Orientation ; orientation invariance ; Performance enhancement ; Principal components analysis ; Public Key Infrastructure ; Sensor phenomena and characterization ; Smart phones ; Smartphones ; wearable sensors</subject><ispartof>IEEE transactions on information forensics and security, 2019-02, Vol.14 (2), p.304-318</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c336t-301621bc538e3408de52d9ee2fe22f2236c8da5006f69aebea80b04f8afa7a03</citedby><cites>FETCH-LOGICAL-c336t-301621bc538e3408de52d9ee2fe22f2236c8da5006f69aebea80b04f8afa7a03</cites><orcidid>0000-0002-7039-256X ; 0000-0001-7332-4207</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8395311$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids></links><search><creatorcontrib>Subramanian, Ravichandran</creatorcontrib><creatorcontrib>Sarkar, Sudeep</creatorcontrib><title>Evaluation of Algorithms for Orientation Invariant Inertial Gait Matching</title><title>IEEE transactions on information forensics and security</title><addtitle>TIFS</addtitle><description>With the prevalent use of smart phones in sensitive applications, unobtrusive methods for continuously verifying the identity of the user have become critical. The embedded inertial sensors in these devices provide an opportunity to develop authentication processes based on behavioral biometrics such as gait. However, one major obstacle is that the orientation of the device relative to the user is hard to control and difficult to determine reliably. This paper presents five methods: magnitude (MAG), principal component analysis (PCA), vector cross product (VCP), reduced gait dynamics image (rGDI), and Kabsch alignment (KAB) that make the authentication process independent of device orientation and hence improve the performance. The five methods are evaluated and compared on two large, publicly available, inertial gait datasets. The baseline (orientation dependent) average equal error rate (EER) when the device was freely oriented is 26.4%. The MAG, PCA, VCP, and rGDI methods reduce the average EER to approximately 23%. The Kabsch (KAB) method is more effective and reduces the average EER to 20.2%.</description><subject>Approximation</subject><subject>Authentication</subject><subject>Biometrics</subject><subject>Biometrics (access control)</subject><subject>Cameras</subject><subject>Gait</subject><subject>Inertial sensing devices</subject><subject>inertial sensors</subject><subject>Orientation</subject><subject>orientation invariance</subject><subject>Performance enhancement</subject><subject>Principal components analysis</subject><subject>Public Key Infrastructure</subject><subject>Sensor phenomena and characterization</subject><subject>Smart phones</subject><subject>Smartphones</subject><subject>wearable sensors</subject><issn>1556-6013</issn><issn>1556-6021</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><recordid>eNo9kE9rwkAQxZfSQq3tByi9BHqOndlNNpujiH8CFg_1voxxV1diYjer0G_fSMTTPJj3Zng_xt4RRoiQf62L2c-IA6oRVymA4A9sgGkqYwkcH-8axTN7adsDQJKgVANWTC9UnSm4po4aG42rXeNd2B_byDY-Wnln6tBvi_pC3lEdOmV8cFRFc3Ih-qZQ7l29e2VPlqrWvN3mkK1n0_VkES9X82IyXsalEDLEAlBy3JSpUEYkoLYm5dvcGG4N55ZzIUu1pa6CtDInszGkYAOJVWQpIxBD9tmfPfnm92zaoA_N2dfdR80RM4Qsz1Tnwt5V-qZtvbH65N2R_J9G0Fdg-gpMX4HpG7Au89FnnDHm7lciTwWi-AeYD2b_</recordid><startdate>20190201</startdate><enddate>20190201</enddate><creator>Subramanian, Ravichandran</creator><creator>Sarkar, Sudeep</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-7039-256X</orcidid><orcidid>https://orcid.org/0000-0001-7332-4207</orcidid></search><sort><creationdate>20190201</creationdate><title>Evaluation of Algorithms for Orientation Invariant Inertial Gait Matching</title><author>Subramanian, Ravichandran ; Sarkar, Sudeep</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c336t-301621bc538e3408de52d9ee2fe22f2236c8da5006f69aebea80b04f8afa7a03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Approximation</topic><topic>Authentication</topic><topic>Biometrics</topic><topic>Biometrics (access control)</topic><topic>Cameras</topic><topic>Gait</topic><topic>Inertial sensing devices</topic><topic>inertial sensors</topic><topic>Orientation</topic><topic>orientation invariance</topic><topic>Performance enhancement</topic><topic>Principal components analysis</topic><topic>Public Key Infrastructure</topic><topic>Sensor phenomena and characterization</topic><topic>Smart phones</topic><topic>Smartphones</topic><topic>wearable sensors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Subramanian, Ravichandran</creatorcontrib><creatorcontrib>Sarkar, Sudeep</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on information forensics and security</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Subramanian, Ravichandran</au><au>Sarkar, Sudeep</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evaluation of Algorithms for Orientation Invariant Inertial Gait Matching</atitle><jtitle>IEEE transactions on information forensics and security</jtitle><stitle>TIFS</stitle><date>2019-02-01</date><risdate>2019</risdate><volume>14</volume><issue>2</issue><spage>304</spage><epage>318</epage><pages>304-318</pages><issn>1556-6013</issn><eissn>1556-6021</eissn><coden>ITIFA6</coden><abstract>With the prevalent use of smart phones in sensitive applications, unobtrusive methods for continuously verifying the identity of the user have become critical. The embedded inertial sensors in these devices provide an opportunity to develop authentication processes based on behavioral biometrics such as gait. However, one major obstacle is that the orientation of the device relative to the user is hard to control and difficult to determine reliably. This paper presents five methods: magnitude (MAG), principal component analysis (PCA), vector cross product (VCP), reduced gait dynamics image (rGDI), and Kabsch alignment (KAB) that make the authentication process independent of device orientation and hence improve the performance. The five methods are evaluated and compared on two large, publicly available, inertial gait datasets. The baseline (orientation dependent) average equal error rate (EER) when the device was freely oriented is 26.4%. The MAG, PCA, VCP, and rGDI methods reduce the average EER to approximately 23%. The Kabsch (KAB) method is more effective and reduces the average EER to 20.2%.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIFS.2018.2850032</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-7039-256X</orcidid><orcidid>https://orcid.org/0000-0001-7332-4207</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1556-6013 |
ispartof | IEEE transactions on information forensics and security, 2019-02, Vol.14 (2), p.304-318 |
issn | 1556-6013 1556-6021 |
language | eng |
recordid | cdi_proquest_journals_2117107978 |
source | IEEE Electronic Library (IEL) |
subjects | Approximation Authentication Biometrics Biometrics (access control) Cameras Gait Inertial sensing devices inertial sensors Orientation orientation invariance Performance enhancement Principal components analysis Public Key Infrastructure Sensor phenomena and characterization Smart phones Smartphones wearable sensors |
title | Evaluation of Algorithms for Orientation Invariant Inertial Gait Matching |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T18%3A49%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evaluation%20of%20Algorithms%20for%20Orientation%20Invariant%20Inertial%20Gait%20Matching&rft.jtitle=IEEE%20transactions%20on%20information%20forensics%20and%20security&rft.au=Subramanian,%20Ravichandran&rft.date=2019-02-01&rft.volume=14&rft.issue=2&rft.spage=304&rft.epage=318&rft.pages=304-318&rft.issn=1556-6013&rft.eissn=1556-6021&rft.coden=ITIFA6&rft_id=info:doi/10.1109/TIFS.2018.2850032&rft_dat=%3Cproquest_cross%3E2117107978%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2117107978&rft_id=info:pmid/&rft_ieee_id=8395311&rfr_iscdi=true |