Evaluation of Algorithms for Orientation Invariant Inertial Gait Matching

With the prevalent use of smart phones in sensitive applications, unobtrusive methods for continuously verifying the identity of the user have become critical. The embedded inertial sensors in these devices provide an opportunity to develop authentication processes based on behavioral biometrics suc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on information forensics and security 2019-02, Vol.14 (2), p.304-318
Hauptverfasser: Subramanian, Ravichandran, Sarkar, Sudeep
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 318
container_issue 2
container_start_page 304
container_title IEEE transactions on information forensics and security
container_volume 14
creator Subramanian, Ravichandran
Sarkar, Sudeep
description With the prevalent use of smart phones in sensitive applications, unobtrusive methods for continuously verifying the identity of the user have become critical. The embedded inertial sensors in these devices provide an opportunity to develop authentication processes based on behavioral biometrics such as gait. However, one major obstacle is that the orientation of the device relative to the user is hard to control and difficult to determine reliably. This paper presents five methods: magnitude (MAG), principal component analysis (PCA), vector cross product (VCP), reduced gait dynamics image (rGDI), and Kabsch alignment (KAB) that make the authentication process independent of device orientation and hence improve the performance. The five methods are evaluated and compared on two large, publicly available, inertial gait datasets. The baseline (orientation dependent) average equal error rate (EER) when the device was freely oriented is 26.4%. The MAG, PCA, VCP, and rGDI methods reduce the average EER to approximately 23%. The Kabsch (KAB) method is more effective and reduces the average EER to 20.2%.
doi_str_mv 10.1109/TIFS.2018.2850032
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2117107978</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8395311</ieee_id><sourcerecordid>2117107978</sourcerecordid><originalsourceid>FETCH-LOGICAL-c336t-301621bc538e3408de52d9ee2fe22f2236c8da5006f69aebea80b04f8afa7a03</originalsourceid><addsrcrecordid>eNo9kE9rwkAQxZfSQq3tByi9BHqOndlNNpujiH8CFg_1voxxV1diYjer0G_fSMTTPJj3Zng_xt4RRoiQf62L2c-IA6oRVymA4A9sgGkqYwkcH-8axTN7adsDQJKgVANWTC9UnSm4po4aG42rXeNd2B_byDY-Wnln6tBvi_pC3lEdOmV8cFRFc3Ih-qZQ7l29e2VPlqrWvN3mkK1n0_VkES9X82IyXsalEDLEAlBy3JSpUEYkoLYm5dvcGG4N55ZzIUu1pa6CtDInszGkYAOJVWQpIxBD9tmfPfnm92zaoA_N2dfdR80RM4Qsz1Tnwt5V-qZtvbH65N2R_J9G0Fdg-gpMX4HpG7Au89FnnDHm7lciTwWi-AeYD2b_</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2117107978</pqid></control><display><type>article</type><title>Evaluation of Algorithms for Orientation Invariant Inertial Gait Matching</title><source>IEEE Electronic Library (IEL)</source><creator>Subramanian, Ravichandran ; Sarkar, Sudeep</creator><creatorcontrib>Subramanian, Ravichandran ; Sarkar, Sudeep</creatorcontrib><description>With the prevalent use of smart phones in sensitive applications, unobtrusive methods for continuously verifying the identity of the user have become critical. The embedded inertial sensors in these devices provide an opportunity to develop authentication processes based on behavioral biometrics such as gait. However, one major obstacle is that the orientation of the device relative to the user is hard to control and difficult to determine reliably. This paper presents five methods: magnitude (MAG), principal component analysis (PCA), vector cross product (VCP), reduced gait dynamics image (rGDI), and Kabsch alignment (KAB) that make the authentication process independent of device orientation and hence improve the performance. The five methods are evaluated and compared on two large, publicly available, inertial gait datasets. The baseline (orientation dependent) average equal error rate (EER) when the device was freely oriented is 26.4%. The MAG, PCA, VCP, and rGDI methods reduce the average EER to approximately 23%. The Kabsch (KAB) method is more effective and reduces the average EER to 20.2%.</description><identifier>ISSN: 1556-6013</identifier><identifier>EISSN: 1556-6021</identifier><identifier>DOI: 10.1109/TIFS.2018.2850032</identifier><identifier>CODEN: ITIFA6</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Approximation ; Authentication ; Biometrics ; Biometrics (access control) ; Cameras ; Gait ; Inertial sensing devices ; inertial sensors ; Orientation ; orientation invariance ; Performance enhancement ; Principal components analysis ; Public Key Infrastructure ; Sensor phenomena and characterization ; Smart phones ; Smartphones ; wearable sensors</subject><ispartof>IEEE transactions on information forensics and security, 2019-02, Vol.14 (2), p.304-318</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c336t-301621bc538e3408de52d9ee2fe22f2236c8da5006f69aebea80b04f8afa7a03</citedby><cites>FETCH-LOGICAL-c336t-301621bc538e3408de52d9ee2fe22f2236c8da5006f69aebea80b04f8afa7a03</cites><orcidid>0000-0002-7039-256X ; 0000-0001-7332-4207</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8395311$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids></links><search><creatorcontrib>Subramanian, Ravichandran</creatorcontrib><creatorcontrib>Sarkar, Sudeep</creatorcontrib><title>Evaluation of Algorithms for Orientation Invariant Inertial Gait Matching</title><title>IEEE transactions on information forensics and security</title><addtitle>TIFS</addtitle><description>With the prevalent use of smart phones in sensitive applications, unobtrusive methods for continuously verifying the identity of the user have become critical. The embedded inertial sensors in these devices provide an opportunity to develop authentication processes based on behavioral biometrics such as gait. However, one major obstacle is that the orientation of the device relative to the user is hard to control and difficult to determine reliably. This paper presents five methods: magnitude (MAG), principal component analysis (PCA), vector cross product (VCP), reduced gait dynamics image (rGDI), and Kabsch alignment (KAB) that make the authentication process independent of device orientation and hence improve the performance. The five methods are evaluated and compared on two large, publicly available, inertial gait datasets. The baseline (orientation dependent) average equal error rate (EER) when the device was freely oriented is 26.4%. The MAG, PCA, VCP, and rGDI methods reduce the average EER to approximately 23%. The Kabsch (KAB) method is more effective and reduces the average EER to 20.2%.</description><subject>Approximation</subject><subject>Authentication</subject><subject>Biometrics</subject><subject>Biometrics (access control)</subject><subject>Cameras</subject><subject>Gait</subject><subject>Inertial sensing devices</subject><subject>inertial sensors</subject><subject>Orientation</subject><subject>orientation invariance</subject><subject>Performance enhancement</subject><subject>Principal components analysis</subject><subject>Public Key Infrastructure</subject><subject>Sensor phenomena and characterization</subject><subject>Smart phones</subject><subject>Smartphones</subject><subject>wearable sensors</subject><issn>1556-6013</issn><issn>1556-6021</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><recordid>eNo9kE9rwkAQxZfSQq3tByi9BHqOndlNNpujiH8CFg_1voxxV1diYjer0G_fSMTTPJj3Zng_xt4RRoiQf62L2c-IA6oRVymA4A9sgGkqYwkcH-8axTN7adsDQJKgVANWTC9UnSm4po4aG42rXeNd2B_byDY-Wnln6tBvi_pC3lEdOmV8cFRFc3Ih-qZQ7l29e2VPlqrWvN3mkK1n0_VkES9X82IyXsalEDLEAlBy3JSpUEYkoLYm5dvcGG4N55ZzIUu1pa6CtDInszGkYAOJVWQpIxBD9tmfPfnm92zaoA_N2dfdR80RM4Qsz1Tnwt5V-qZtvbH65N2R_J9G0Fdg-gpMX4HpG7Au89FnnDHm7lciTwWi-AeYD2b_</recordid><startdate>20190201</startdate><enddate>20190201</enddate><creator>Subramanian, Ravichandran</creator><creator>Sarkar, Sudeep</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-7039-256X</orcidid><orcidid>https://orcid.org/0000-0001-7332-4207</orcidid></search><sort><creationdate>20190201</creationdate><title>Evaluation of Algorithms for Orientation Invariant Inertial Gait Matching</title><author>Subramanian, Ravichandran ; Sarkar, Sudeep</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c336t-301621bc538e3408de52d9ee2fe22f2236c8da5006f69aebea80b04f8afa7a03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Approximation</topic><topic>Authentication</topic><topic>Biometrics</topic><topic>Biometrics (access control)</topic><topic>Cameras</topic><topic>Gait</topic><topic>Inertial sensing devices</topic><topic>inertial sensors</topic><topic>Orientation</topic><topic>orientation invariance</topic><topic>Performance enhancement</topic><topic>Principal components analysis</topic><topic>Public Key Infrastructure</topic><topic>Sensor phenomena and characterization</topic><topic>Smart phones</topic><topic>Smartphones</topic><topic>wearable sensors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Subramanian, Ravichandran</creatorcontrib><creatorcontrib>Sarkar, Sudeep</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on information forensics and security</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Subramanian, Ravichandran</au><au>Sarkar, Sudeep</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evaluation of Algorithms for Orientation Invariant Inertial Gait Matching</atitle><jtitle>IEEE transactions on information forensics and security</jtitle><stitle>TIFS</stitle><date>2019-02-01</date><risdate>2019</risdate><volume>14</volume><issue>2</issue><spage>304</spage><epage>318</epage><pages>304-318</pages><issn>1556-6013</issn><eissn>1556-6021</eissn><coden>ITIFA6</coden><abstract>With the prevalent use of smart phones in sensitive applications, unobtrusive methods for continuously verifying the identity of the user have become critical. The embedded inertial sensors in these devices provide an opportunity to develop authentication processes based on behavioral biometrics such as gait. However, one major obstacle is that the orientation of the device relative to the user is hard to control and difficult to determine reliably. This paper presents five methods: magnitude (MAG), principal component analysis (PCA), vector cross product (VCP), reduced gait dynamics image (rGDI), and Kabsch alignment (KAB) that make the authentication process independent of device orientation and hence improve the performance. The five methods are evaluated and compared on two large, publicly available, inertial gait datasets. The baseline (orientation dependent) average equal error rate (EER) when the device was freely oriented is 26.4%. The MAG, PCA, VCP, and rGDI methods reduce the average EER to approximately 23%. The Kabsch (KAB) method is more effective and reduces the average EER to 20.2%.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIFS.2018.2850032</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-7039-256X</orcidid><orcidid>https://orcid.org/0000-0001-7332-4207</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1556-6013
ispartof IEEE transactions on information forensics and security, 2019-02, Vol.14 (2), p.304-318
issn 1556-6013
1556-6021
language eng
recordid cdi_proquest_journals_2117107978
source IEEE Electronic Library (IEL)
subjects Approximation
Authentication
Biometrics
Biometrics (access control)
Cameras
Gait
Inertial sensing devices
inertial sensors
Orientation
orientation invariance
Performance enhancement
Principal components analysis
Public Key Infrastructure
Sensor phenomena and characterization
Smart phones
Smartphones
wearable sensors
title Evaluation of Algorithms for Orientation Invariant Inertial Gait Matching
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T18%3A49%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evaluation%20of%20Algorithms%20for%20Orientation%20Invariant%20Inertial%20Gait%20Matching&rft.jtitle=IEEE%20transactions%20on%20information%20forensics%20and%20security&rft.au=Subramanian,%20Ravichandran&rft.date=2019-02-01&rft.volume=14&rft.issue=2&rft.spage=304&rft.epage=318&rft.pages=304-318&rft.issn=1556-6013&rft.eissn=1556-6021&rft.coden=ITIFA6&rft_id=info:doi/10.1109/TIFS.2018.2850032&rft_dat=%3Cproquest_cross%3E2117107978%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2117107978&rft_id=info:pmid/&rft_ieee_id=8395311&rfr_iscdi=true