Temperature Monitoring and Flow Estimation in Electrolytic Cells Using Wireless Harsh Environment Sensors
Proper control of temperature and electrolyte circulation flow is mandatory in electrolytic cells to produce dense and high-purity cathodes. The electrochemical kinetics of cells is inherently dependent on these electrolyte variables. Continuous monitoring of electrolyte condition allows enhancing c...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on industry applications 2018-07, Vol.54 (4), p.3982-3990 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3990 |
---|---|
container_issue | 4 |
container_start_page | 3982 |
container_title | IEEE transactions on industry applications |
container_volume | 54 |
creator | Aqueveque, Pablo Morales, Anibal S. Lopez Valenzuela, Roberto Saavedra Rodriguez, Francisco Pino, Esteban J. Wiechmann, Eduardo P. |
description | Proper control of temperature and electrolyte circulation flow is mandatory in electrolytic cells to produce dense and high-purity cathodes. The electrochemical kinetics of cells is inherently dependent on these electrolyte variables. Continuous monitoring of electrolyte condition allows enhancing cathode quality, electrodeposition time, better utilization of electrolyte additives, early identification of temperature excursions, and electrolyte flow blockages. Abnormal cell conditions can produce excessive evaporation, higher energy consumption, anode passivation that impair cathode production in copper electrorefining, and safety issues because the production of flammable hydrogen in copper electrowinning. Therefore, the monitoring of changes in temperature and electrolyte flow can give critical indicators of process deviations. With real-time information about electrolyte variables, it is possible to provide early warnings to face the wide variability of cell performance and safety conditions caused by electrolyte condition mismanagement. This paper proposes a noninvasive wireless sensor for monitoring the electrolyte temperature inside cells and estimates the electrolyte circulation flow through each cell simultaneously. The sensor design is suitable to highly corrosive sulfuric acid environments. The condition-monitoring sensor proposed is small in size, lightweight, and meets battery-free operation and nonsparking safety requirements. It uses an inductive link-based system for powering and a radio frequency-link for communicating. The result is a sensor that surpasses the features of standard instrumentation not suitable for electrolytic process monitoring. |
doi_str_mv | 10.1109/TIA.2018.2825222 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2117060480</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8334812</ieee_id><sourcerecordid>2117060480</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-447f2c46b596c9db40e863d1ec6e3b718958f93c44551e5d0dd256cbc343e45f3</originalsourceid><addsrcrecordid>eNo9kM9LwzAYhoMoOKd3wUvAc2d-tslxjM4NJh7c8Fja9KtmdMlMMmX_vR0TT-_leb-P90HonpIJpUQ_rZfTCSNUTZhikjF2gUZUc51pnheXaESI5pnWWlyjmxi3hFAhqRghu4bdHkKdDgHwi3c2-WDdB65di-e9_8FlTHZXJ-sdtg6XPZgUfH9M1uAZ9H3Em3ji322AHmLEizrET1y6bxu824FL-A1c9CHeoquu7iPc_eUYbeblerbIVq_Py9l0lRmmacqEKDpmRN5InRvdNoKAynlLweTAm4IqLVWnuRFCSgqyJW3LZG4awwUHITs-Ro_nu_vgvw4QU7X1h-CGlxWjtCA5EYoMFDlTJvgYA3TVPgw7w7GipDoJrQah1Ulo9Sd0qDycKxYA_nHFuVCU8V-HenKI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2117060480</pqid></control><display><type>article</type><title>Temperature Monitoring and Flow Estimation in Electrolytic Cells Using Wireless Harsh Environment Sensors</title><source>IEEE Electronic Library (IEL)</source><creator>Aqueveque, Pablo ; Morales, Anibal S. ; Lopez Valenzuela, Roberto ; Saavedra Rodriguez, Francisco ; Pino, Esteban J. ; Wiechmann, Eduardo P.</creator><creatorcontrib>Aqueveque, Pablo ; Morales, Anibal S. ; Lopez Valenzuela, Roberto ; Saavedra Rodriguez, Francisco ; Pino, Esteban J. ; Wiechmann, Eduardo P.</creatorcontrib><description>Proper control of temperature and electrolyte circulation flow is mandatory in electrolytic cells to produce dense and high-purity cathodes. The electrochemical kinetics of cells is inherently dependent on these electrolyte variables. Continuous monitoring of electrolyte condition allows enhancing cathode quality, electrodeposition time, better utilization of electrolyte additives, early identification of temperature excursions, and electrolyte flow blockages. Abnormal cell conditions can produce excessive evaporation, higher energy consumption, anode passivation that impair cathode production in copper electrorefining, and safety issues because the production of flammable hydrogen in copper electrowinning. Therefore, the monitoring of changes in temperature and electrolyte flow can give critical indicators of process deviations. With real-time information about electrolyte variables, it is possible to provide early warnings to face the wide variability of cell performance and safety conditions caused by electrolyte condition mismanagement. This paper proposes a noninvasive wireless sensor for monitoring the electrolyte temperature inside cells and estimates the electrolyte circulation flow through each cell simultaneously. The sensor design is suitable to highly corrosive sulfuric acid environments. The condition-monitoring sensor proposed is small in size, lightweight, and meets battery-free operation and nonsparking safety requirements. It uses an inductive link-based system for powering and a radio frequency-link for communicating. The result is a sensor that surpasses the features of standard instrumentation not suitable for electrolytic process monitoring.</description><identifier>ISSN: 0093-9994</identifier><identifier>EISSN: 1939-9367</identifier><identifier>DOI: 10.1109/TIA.2018.2825222</identifier><identifier>CODEN: ITIACR</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Additives ; Cathodes ; Communication ; Condition monitoring ; Continuity (mathematics) ; Copper ; Dependent variables ; Electrolyte monitoring ; Electrolytes ; Electrolytic cells ; electrolytic process ; Electrorefining ; Energy consumption ; Flammability ; harsh environment ; Hydrogen storage ; Monitoring ; Product safety ; production ; safety ; Sensors ; Sulfuric acid ; Temperature measurement ; Temperature sensors ; wireless sensor</subject><ispartof>IEEE transactions on industry applications, 2018-07, Vol.54 (4), p.3982-3990</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-447f2c46b596c9db40e863d1ec6e3b718958f93c44551e5d0dd256cbc343e45f3</citedby><cites>FETCH-LOGICAL-c291t-447f2c46b596c9db40e863d1ec6e3b718958f93c44551e5d0dd256cbc343e45f3</cites><orcidid>0000-0002-5052-7682 ; 0000-0002-2636-051X ; 0000-0002-9890-626X ; 0000-0002-7473-3763 ; 0000-0003-4210-4695 ; 0000-0001-9101-0383</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8334812$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8334812$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Aqueveque, Pablo</creatorcontrib><creatorcontrib>Morales, Anibal S.</creatorcontrib><creatorcontrib>Lopez Valenzuela, Roberto</creatorcontrib><creatorcontrib>Saavedra Rodriguez, Francisco</creatorcontrib><creatorcontrib>Pino, Esteban J.</creatorcontrib><creatorcontrib>Wiechmann, Eduardo P.</creatorcontrib><title>Temperature Monitoring and Flow Estimation in Electrolytic Cells Using Wireless Harsh Environment Sensors</title><title>IEEE transactions on industry applications</title><addtitle>TIA</addtitle><description>Proper control of temperature and electrolyte circulation flow is mandatory in electrolytic cells to produce dense and high-purity cathodes. The electrochemical kinetics of cells is inherently dependent on these electrolyte variables. Continuous monitoring of electrolyte condition allows enhancing cathode quality, electrodeposition time, better utilization of electrolyte additives, early identification of temperature excursions, and electrolyte flow blockages. Abnormal cell conditions can produce excessive evaporation, higher energy consumption, anode passivation that impair cathode production in copper electrorefining, and safety issues because the production of flammable hydrogen in copper electrowinning. Therefore, the monitoring of changes in temperature and electrolyte flow can give critical indicators of process deviations. With real-time information about electrolyte variables, it is possible to provide early warnings to face the wide variability of cell performance and safety conditions caused by electrolyte condition mismanagement. This paper proposes a noninvasive wireless sensor for monitoring the electrolyte temperature inside cells and estimates the electrolyte circulation flow through each cell simultaneously. The sensor design is suitable to highly corrosive sulfuric acid environments. The condition-monitoring sensor proposed is small in size, lightweight, and meets battery-free operation and nonsparking safety requirements. It uses an inductive link-based system for powering and a radio frequency-link for communicating. The result is a sensor that surpasses the features of standard instrumentation not suitable for electrolytic process monitoring.</description><subject>Additives</subject><subject>Cathodes</subject><subject>Communication</subject><subject>Condition monitoring</subject><subject>Continuity (mathematics)</subject><subject>Copper</subject><subject>Dependent variables</subject><subject>Electrolyte monitoring</subject><subject>Electrolytes</subject><subject>Electrolytic cells</subject><subject>electrolytic process</subject><subject>Electrorefining</subject><subject>Energy consumption</subject><subject>Flammability</subject><subject>harsh environment</subject><subject>Hydrogen storage</subject><subject>Monitoring</subject><subject>Product safety</subject><subject>production</subject><subject>safety</subject><subject>Sensors</subject><subject>Sulfuric acid</subject><subject>Temperature measurement</subject><subject>Temperature sensors</subject><subject>wireless sensor</subject><issn>0093-9994</issn><issn>1939-9367</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kM9LwzAYhoMoOKd3wUvAc2d-tslxjM4NJh7c8Fja9KtmdMlMMmX_vR0TT-_leb-P90HonpIJpUQ_rZfTCSNUTZhikjF2gUZUc51pnheXaESI5pnWWlyjmxi3hFAhqRghu4bdHkKdDgHwi3c2-WDdB65di-e9_8FlTHZXJ-sdtg6XPZgUfH9M1uAZ9H3Em3ji322AHmLEizrET1y6bxu824FL-A1c9CHeoquu7iPc_eUYbeblerbIVq_Py9l0lRmmacqEKDpmRN5InRvdNoKAynlLweTAm4IqLVWnuRFCSgqyJW3LZG4awwUHITs-Ro_nu_vgvw4QU7X1h-CGlxWjtCA5EYoMFDlTJvgYA3TVPgw7w7GipDoJrQah1Ulo9Sd0qDycKxYA_nHFuVCU8V-HenKI</recordid><startdate>201807</startdate><enddate>201807</enddate><creator>Aqueveque, Pablo</creator><creator>Morales, Anibal S.</creator><creator>Lopez Valenzuela, Roberto</creator><creator>Saavedra Rodriguez, Francisco</creator><creator>Pino, Esteban J.</creator><creator>Wiechmann, Eduardo P.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-5052-7682</orcidid><orcidid>https://orcid.org/0000-0002-2636-051X</orcidid><orcidid>https://orcid.org/0000-0002-9890-626X</orcidid><orcidid>https://orcid.org/0000-0002-7473-3763</orcidid><orcidid>https://orcid.org/0000-0003-4210-4695</orcidid><orcidid>https://orcid.org/0000-0001-9101-0383</orcidid></search><sort><creationdate>201807</creationdate><title>Temperature Monitoring and Flow Estimation in Electrolytic Cells Using Wireless Harsh Environment Sensors</title><author>Aqueveque, Pablo ; Morales, Anibal S. ; Lopez Valenzuela, Roberto ; Saavedra Rodriguez, Francisco ; Pino, Esteban J. ; Wiechmann, Eduardo P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-447f2c46b596c9db40e863d1ec6e3b718958f93c44551e5d0dd256cbc343e45f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Additives</topic><topic>Cathodes</topic><topic>Communication</topic><topic>Condition monitoring</topic><topic>Continuity (mathematics)</topic><topic>Copper</topic><topic>Dependent variables</topic><topic>Electrolyte monitoring</topic><topic>Electrolytes</topic><topic>Electrolytic cells</topic><topic>electrolytic process</topic><topic>Electrorefining</topic><topic>Energy consumption</topic><topic>Flammability</topic><topic>harsh environment</topic><topic>Hydrogen storage</topic><topic>Monitoring</topic><topic>Product safety</topic><topic>production</topic><topic>safety</topic><topic>Sensors</topic><topic>Sulfuric acid</topic><topic>Temperature measurement</topic><topic>Temperature sensors</topic><topic>wireless sensor</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Aqueveque, Pablo</creatorcontrib><creatorcontrib>Morales, Anibal S.</creatorcontrib><creatorcontrib>Lopez Valenzuela, Roberto</creatorcontrib><creatorcontrib>Saavedra Rodriguez, Francisco</creatorcontrib><creatorcontrib>Pino, Esteban J.</creatorcontrib><creatorcontrib>Wiechmann, Eduardo P.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on industry applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Aqueveque, Pablo</au><au>Morales, Anibal S.</au><au>Lopez Valenzuela, Roberto</au><au>Saavedra Rodriguez, Francisco</au><au>Pino, Esteban J.</au><au>Wiechmann, Eduardo P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Temperature Monitoring and Flow Estimation in Electrolytic Cells Using Wireless Harsh Environment Sensors</atitle><jtitle>IEEE transactions on industry applications</jtitle><stitle>TIA</stitle><date>2018-07</date><risdate>2018</risdate><volume>54</volume><issue>4</issue><spage>3982</spage><epage>3990</epage><pages>3982-3990</pages><issn>0093-9994</issn><eissn>1939-9367</eissn><coden>ITIACR</coden><abstract>Proper control of temperature and electrolyte circulation flow is mandatory in electrolytic cells to produce dense and high-purity cathodes. The electrochemical kinetics of cells is inherently dependent on these electrolyte variables. Continuous monitoring of electrolyte condition allows enhancing cathode quality, electrodeposition time, better utilization of electrolyte additives, early identification of temperature excursions, and electrolyte flow blockages. Abnormal cell conditions can produce excessive evaporation, higher energy consumption, anode passivation that impair cathode production in copper electrorefining, and safety issues because the production of flammable hydrogen in copper electrowinning. Therefore, the monitoring of changes in temperature and electrolyte flow can give critical indicators of process deviations. With real-time information about electrolyte variables, it is possible to provide early warnings to face the wide variability of cell performance and safety conditions caused by electrolyte condition mismanagement. This paper proposes a noninvasive wireless sensor for monitoring the electrolyte temperature inside cells and estimates the electrolyte circulation flow through each cell simultaneously. The sensor design is suitable to highly corrosive sulfuric acid environments. The condition-monitoring sensor proposed is small in size, lightweight, and meets battery-free operation and nonsparking safety requirements. It uses an inductive link-based system for powering and a radio frequency-link for communicating. The result is a sensor that surpasses the features of standard instrumentation not suitable for electrolytic process monitoring.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIA.2018.2825222</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-5052-7682</orcidid><orcidid>https://orcid.org/0000-0002-2636-051X</orcidid><orcidid>https://orcid.org/0000-0002-9890-626X</orcidid><orcidid>https://orcid.org/0000-0002-7473-3763</orcidid><orcidid>https://orcid.org/0000-0003-4210-4695</orcidid><orcidid>https://orcid.org/0000-0001-9101-0383</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0093-9994 |
ispartof | IEEE transactions on industry applications, 2018-07, Vol.54 (4), p.3982-3990 |
issn | 0093-9994 1939-9367 |
language | eng |
recordid | cdi_proquest_journals_2117060480 |
source | IEEE Electronic Library (IEL) |
subjects | Additives Cathodes Communication Condition monitoring Continuity (mathematics) Copper Dependent variables Electrolyte monitoring Electrolytes Electrolytic cells electrolytic process Electrorefining Energy consumption Flammability harsh environment Hydrogen storage Monitoring Product safety production safety Sensors Sulfuric acid Temperature measurement Temperature sensors wireless sensor |
title | Temperature Monitoring and Flow Estimation in Electrolytic Cells Using Wireless Harsh Environment Sensors |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T14%3A04%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Temperature%20Monitoring%20and%20Flow%20Estimation%20in%20Electrolytic%20Cells%20Using%20Wireless%20Harsh%20Environment%20Sensors&rft.jtitle=IEEE%20transactions%20on%20industry%20applications&rft.au=Aqueveque,%20Pablo&rft.date=2018-07&rft.volume=54&rft.issue=4&rft.spage=3982&rft.epage=3990&rft.pages=3982-3990&rft.issn=0093-9994&rft.eissn=1939-9367&rft.coden=ITIACR&rft_id=info:doi/10.1109/TIA.2018.2825222&rft_dat=%3Cproquest_RIE%3E2117060480%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2117060480&rft_id=info:pmid/&rft_ieee_id=8334812&rfr_iscdi=true |