Temperature Monitoring and Flow Estimation in Electrolytic Cells Using Wireless Harsh Environment Sensors

Proper control of temperature and electrolyte circulation flow is mandatory in electrolytic cells to produce dense and high-purity cathodes. The electrochemical kinetics of cells is inherently dependent on these electrolyte variables. Continuous monitoring of electrolyte condition allows enhancing c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on industry applications 2018-07, Vol.54 (4), p.3982-3990
Hauptverfasser: Aqueveque, Pablo, Morales, Anibal S., Lopez Valenzuela, Roberto, Saavedra Rodriguez, Francisco, Pino, Esteban J., Wiechmann, Eduardo P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3990
container_issue 4
container_start_page 3982
container_title IEEE transactions on industry applications
container_volume 54
creator Aqueveque, Pablo
Morales, Anibal S.
Lopez Valenzuela, Roberto
Saavedra Rodriguez, Francisco
Pino, Esteban J.
Wiechmann, Eduardo P.
description Proper control of temperature and electrolyte circulation flow is mandatory in electrolytic cells to produce dense and high-purity cathodes. The electrochemical kinetics of cells is inherently dependent on these electrolyte variables. Continuous monitoring of electrolyte condition allows enhancing cathode quality, electrodeposition time, better utilization of electrolyte additives, early identification of temperature excursions, and electrolyte flow blockages. Abnormal cell conditions can produce excessive evaporation, higher energy consumption, anode passivation that impair cathode production in copper electrorefining, and safety issues because the production of flammable hydrogen in copper electrowinning. Therefore, the monitoring of changes in temperature and electrolyte flow can give critical indicators of process deviations. With real-time information about electrolyte variables, it is possible to provide early warnings to face the wide variability of cell performance and safety conditions caused by electrolyte condition mismanagement. This paper proposes a noninvasive wireless sensor for monitoring the electrolyte temperature inside cells and estimates the electrolyte circulation flow through each cell simultaneously. The sensor design is suitable to highly corrosive sulfuric acid environments. The condition-monitoring sensor proposed is small in size, lightweight, and meets battery-free operation and nonsparking safety requirements. It uses an inductive link-based system for powering and a radio frequency-link for communicating. The result is a sensor that surpasses the features of standard instrumentation not suitable for electrolytic process monitoring.
doi_str_mv 10.1109/TIA.2018.2825222
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2117060480</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8334812</ieee_id><sourcerecordid>2117060480</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-447f2c46b596c9db40e863d1ec6e3b718958f93c44551e5d0dd256cbc343e45f3</originalsourceid><addsrcrecordid>eNo9kM9LwzAYhoMoOKd3wUvAc2d-tslxjM4NJh7c8Fja9KtmdMlMMmX_vR0TT-_leb-P90HonpIJpUQ_rZfTCSNUTZhikjF2gUZUc51pnheXaESI5pnWWlyjmxi3hFAhqRghu4bdHkKdDgHwi3c2-WDdB65di-e9_8FlTHZXJ-sdtg6XPZgUfH9M1uAZ9H3Em3ji322AHmLEizrET1y6bxu824FL-A1c9CHeoquu7iPc_eUYbeblerbIVq_Py9l0lRmmacqEKDpmRN5InRvdNoKAynlLweTAm4IqLVWnuRFCSgqyJW3LZG4awwUHITs-Ro_nu_vgvw4QU7X1h-CGlxWjtCA5EYoMFDlTJvgYA3TVPgw7w7GipDoJrQah1Ulo9Sd0qDycKxYA_nHFuVCU8V-HenKI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2117060480</pqid></control><display><type>article</type><title>Temperature Monitoring and Flow Estimation in Electrolytic Cells Using Wireless Harsh Environment Sensors</title><source>IEEE Electronic Library (IEL)</source><creator>Aqueveque, Pablo ; Morales, Anibal S. ; Lopez Valenzuela, Roberto ; Saavedra Rodriguez, Francisco ; Pino, Esteban J. ; Wiechmann, Eduardo P.</creator><creatorcontrib>Aqueveque, Pablo ; Morales, Anibal S. ; Lopez Valenzuela, Roberto ; Saavedra Rodriguez, Francisco ; Pino, Esteban J. ; Wiechmann, Eduardo P.</creatorcontrib><description>Proper control of temperature and electrolyte circulation flow is mandatory in electrolytic cells to produce dense and high-purity cathodes. The electrochemical kinetics of cells is inherently dependent on these electrolyte variables. Continuous monitoring of electrolyte condition allows enhancing cathode quality, electrodeposition time, better utilization of electrolyte additives, early identification of temperature excursions, and electrolyte flow blockages. Abnormal cell conditions can produce excessive evaporation, higher energy consumption, anode passivation that impair cathode production in copper electrorefining, and safety issues because the production of flammable hydrogen in copper electrowinning. Therefore, the monitoring of changes in temperature and electrolyte flow can give critical indicators of process deviations. With real-time information about electrolyte variables, it is possible to provide early warnings to face the wide variability of cell performance and safety conditions caused by electrolyte condition mismanagement. This paper proposes a noninvasive wireless sensor for monitoring the electrolyte temperature inside cells and estimates the electrolyte circulation flow through each cell simultaneously. The sensor design is suitable to highly corrosive sulfuric acid environments. The condition-monitoring sensor proposed is small in size, lightweight, and meets battery-free operation and nonsparking safety requirements. It uses an inductive link-based system for powering and a radio frequency-link for communicating. The result is a sensor that surpasses the features of standard instrumentation not suitable for electrolytic process monitoring.</description><identifier>ISSN: 0093-9994</identifier><identifier>EISSN: 1939-9367</identifier><identifier>DOI: 10.1109/TIA.2018.2825222</identifier><identifier>CODEN: ITIACR</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Additives ; Cathodes ; Communication ; Condition monitoring ; Continuity (mathematics) ; Copper ; Dependent variables ; Electrolyte monitoring ; Electrolytes ; Electrolytic cells ; electrolytic process ; Electrorefining ; Energy consumption ; Flammability ; harsh environment ; Hydrogen storage ; Monitoring ; Product safety ; production ; safety ; Sensors ; Sulfuric acid ; Temperature measurement ; Temperature sensors ; wireless sensor</subject><ispartof>IEEE transactions on industry applications, 2018-07, Vol.54 (4), p.3982-3990</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-447f2c46b596c9db40e863d1ec6e3b718958f93c44551e5d0dd256cbc343e45f3</citedby><cites>FETCH-LOGICAL-c291t-447f2c46b596c9db40e863d1ec6e3b718958f93c44551e5d0dd256cbc343e45f3</cites><orcidid>0000-0002-5052-7682 ; 0000-0002-2636-051X ; 0000-0002-9890-626X ; 0000-0002-7473-3763 ; 0000-0003-4210-4695 ; 0000-0001-9101-0383</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8334812$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8334812$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Aqueveque, Pablo</creatorcontrib><creatorcontrib>Morales, Anibal S.</creatorcontrib><creatorcontrib>Lopez Valenzuela, Roberto</creatorcontrib><creatorcontrib>Saavedra Rodriguez, Francisco</creatorcontrib><creatorcontrib>Pino, Esteban J.</creatorcontrib><creatorcontrib>Wiechmann, Eduardo P.</creatorcontrib><title>Temperature Monitoring and Flow Estimation in Electrolytic Cells Using Wireless Harsh Environment Sensors</title><title>IEEE transactions on industry applications</title><addtitle>TIA</addtitle><description>Proper control of temperature and electrolyte circulation flow is mandatory in electrolytic cells to produce dense and high-purity cathodes. The electrochemical kinetics of cells is inherently dependent on these electrolyte variables. Continuous monitoring of electrolyte condition allows enhancing cathode quality, electrodeposition time, better utilization of electrolyte additives, early identification of temperature excursions, and electrolyte flow blockages. Abnormal cell conditions can produce excessive evaporation, higher energy consumption, anode passivation that impair cathode production in copper electrorefining, and safety issues because the production of flammable hydrogen in copper electrowinning. Therefore, the monitoring of changes in temperature and electrolyte flow can give critical indicators of process deviations. With real-time information about electrolyte variables, it is possible to provide early warnings to face the wide variability of cell performance and safety conditions caused by electrolyte condition mismanagement. This paper proposes a noninvasive wireless sensor for monitoring the electrolyte temperature inside cells and estimates the electrolyte circulation flow through each cell simultaneously. The sensor design is suitable to highly corrosive sulfuric acid environments. The condition-monitoring sensor proposed is small in size, lightweight, and meets battery-free operation and nonsparking safety requirements. It uses an inductive link-based system for powering and a radio frequency-link for communicating. The result is a sensor that surpasses the features of standard instrumentation not suitable for electrolytic process monitoring.</description><subject>Additives</subject><subject>Cathodes</subject><subject>Communication</subject><subject>Condition monitoring</subject><subject>Continuity (mathematics)</subject><subject>Copper</subject><subject>Dependent variables</subject><subject>Electrolyte monitoring</subject><subject>Electrolytes</subject><subject>Electrolytic cells</subject><subject>electrolytic process</subject><subject>Electrorefining</subject><subject>Energy consumption</subject><subject>Flammability</subject><subject>harsh environment</subject><subject>Hydrogen storage</subject><subject>Monitoring</subject><subject>Product safety</subject><subject>production</subject><subject>safety</subject><subject>Sensors</subject><subject>Sulfuric acid</subject><subject>Temperature measurement</subject><subject>Temperature sensors</subject><subject>wireless sensor</subject><issn>0093-9994</issn><issn>1939-9367</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kM9LwzAYhoMoOKd3wUvAc2d-tslxjM4NJh7c8Fja9KtmdMlMMmX_vR0TT-_leb-P90HonpIJpUQ_rZfTCSNUTZhikjF2gUZUc51pnheXaESI5pnWWlyjmxi3hFAhqRghu4bdHkKdDgHwi3c2-WDdB65di-e9_8FlTHZXJ-sdtg6XPZgUfH9M1uAZ9H3Em3ji322AHmLEizrET1y6bxu824FL-A1c9CHeoquu7iPc_eUYbeblerbIVq_Py9l0lRmmacqEKDpmRN5InRvdNoKAynlLweTAm4IqLVWnuRFCSgqyJW3LZG4awwUHITs-Ro_nu_vgvw4QU7X1h-CGlxWjtCA5EYoMFDlTJvgYA3TVPgw7w7GipDoJrQah1Ulo9Sd0qDycKxYA_nHFuVCU8V-HenKI</recordid><startdate>201807</startdate><enddate>201807</enddate><creator>Aqueveque, Pablo</creator><creator>Morales, Anibal S.</creator><creator>Lopez Valenzuela, Roberto</creator><creator>Saavedra Rodriguez, Francisco</creator><creator>Pino, Esteban J.</creator><creator>Wiechmann, Eduardo P.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-5052-7682</orcidid><orcidid>https://orcid.org/0000-0002-2636-051X</orcidid><orcidid>https://orcid.org/0000-0002-9890-626X</orcidid><orcidid>https://orcid.org/0000-0002-7473-3763</orcidid><orcidid>https://orcid.org/0000-0003-4210-4695</orcidid><orcidid>https://orcid.org/0000-0001-9101-0383</orcidid></search><sort><creationdate>201807</creationdate><title>Temperature Monitoring and Flow Estimation in Electrolytic Cells Using Wireless Harsh Environment Sensors</title><author>Aqueveque, Pablo ; Morales, Anibal S. ; Lopez Valenzuela, Roberto ; Saavedra Rodriguez, Francisco ; Pino, Esteban J. ; Wiechmann, Eduardo P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-447f2c46b596c9db40e863d1ec6e3b718958f93c44551e5d0dd256cbc343e45f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Additives</topic><topic>Cathodes</topic><topic>Communication</topic><topic>Condition monitoring</topic><topic>Continuity (mathematics)</topic><topic>Copper</topic><topic>Dependent variables</topic><topic>Electrolyte monitoring</topic><topic>Electrolytes</topic><topic>Electrolytic cells</topic><topic>electrolytic process</topic><topic>Electrorefining</topic><topic>Energy consumption</topic><topic>Flammability</topic><topic>harsh environment</topic><topic>Hydrogen storage</topic><topic>Monitoring</topic><topic>Product safety</topic><topic>production</topic><topic>safety</topic><topic>Sensors</topic><topic>Sulfuric acid</topic><topic>Temperature measurement</topic><topic>Temperature sensors</topic><topic>wireless sensor</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Aqueveque, Pablo</creatorcontrib><creatorcontrib>Morales, Anibal S.</creatorcontrib><creatorcontrib>Lopez Valenzuela, Roberto</creatorcontrib><creatorcontrib>Saavedra Rodriguez, Francisco</creatorcontrib><creatorcontrib>Pino, Esteban J.</creatorcontrib><creatorcontrib>Wiechmann, Eduardo P.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on industry applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Aqueveque, Pablo</au><au>Morales, Anibal S.</au><au>Lopez Valenzuela, Roberto</au><au>Saavedra Rodriguez, Francisco</au><au>Pino, Esteban J.</au><au>Wiechmann, Eduardo P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Temperature Monitoring and Flow Estimation in Electrolytic Cells Using Wireless Harsh Environment Sensors</atitle><jtitle>IEEE transactions on industry applications</jtitle><stitle>TIA</stitle><date>2018-07</date><risdate>2018</risdate><volume>54</volume><issue>4</issue><spage>3982</spage><epage>3990</epage><pages>3982-3990</pages><issn>0093-9994</issn><eissn>1939-9367</eissn><coden>ITIACR</coden><abstract>Proper control of temperature and electrolyte circulation flow is mandatory in electrolytic cells to produce dense and high-purity cathodes. The electrochemical kinetics of cells is inherently dependent on these electrolyte variables. Continuous monitoring of electrolyte condition allows enhancing cathode quality, electrodeposition time, better utilization of electrolyte additives, early identification of temperature excursions, and electrolyte flow blockages. Abnormal cell conditions can produce excessive evaporation, higher energy consumption, anode passivation that impair cathode production in copper electrorefining, and safety issues because the production of flammable hydrogen in copper electrowinning. Therefore, the monitoring of changes in temperature and electrolyte flow can give critical indicators of process deviations. With real-time information about electrolyte variables, it is possible to provide early warnings to face the wide variability of cell performance and safety conditions caused by electrolyte condition mismanagement. This paper proposes a noninvasive wireless sensor for monitoring the electrolyte temperature inside cells and estimates the electrolyte circulation flow through each cell simultaneously. The sensor design is suitable to highly corrosive sulfuric acid environments. The condition-monitoring sensor proposed is small in size, lightweight, and meets battery-free operation and nonsparking safety requirements. It uses an inductive link-based system for powering and a radio frequency-link for communicating. The result is a sensor that surpasses the features of standard instrumentation not suitable for electrolytic process monitoring.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIA.2018.2825222</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-5052-7682</orcidid><orcidid>https://orcid.org/0000-0002-2636-051X</orcidid><orcidid>https://orcid.org/0000-0002-9890-626X</orcidid><orcidid>https://orcid.org/0000-0002-7473-3763</orcidid><orcidid>https://orcid.org/0000-0003-4210-4695</orcidid><orcidid>https://orcid.org/0000-0001-9101-0383</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0093-9994
ispartof IEEE transactions on industry applications, 2018-07, Vol.54 (4), p.3982-3990
issn 0093-9994
1939-9367
language eng
recordid cdi_proquest_journals_2117060480
source IEEE Electronic Library (IEL)
subjects Additives
Cathodes
Communication
Condition monitoring
Continuity (mathematics)
Copper
Dependent variables
Electrolyte monitoring
Electrolytes
Electrolytic cells
electrolytic process
Electrorefining
Energy consumption
Flammability
harsh environment
Hydrogen storage
Monitoring
Product safety
production
safety
Sensors
Sulfuric acid
Temperature measurement
Temperature sensors
wireless sensor
title Temperature Monitoring and Flow Estimation in Electrolytic Cells Using Wireless Harsh Environment Sensors
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T14%3A04%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Temperature%20Monitoring%20and%20Flow%20Estimation%20in%20Electrolytic%20Cells%20Using%20Wireless%20Harsh%20Environment%20Sensors&rft.jtitle=IEEE%20transactions%20on%20industry%20applications&rft.au=Aqueveque,%20Pablo&rft.date=2018-07&rft.volume=54&rft.issue=4&rft.spage=3982&rft.epage=3990&rft.pages=3982-3990&rft.issn=0093-9994&rft.eissn=1939-9367&rft.coden=ITIACR&rft_id=info:doi/10.1109/TIA.2018.2825222&rft_dat=%3Cproquest_RIE%3E2117060480%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2117060480&rft_id=info:pmid/&rft_ieee_id=8334812&rfr_iscdi=true