Analytical Lorentz Force Model Between 1-D Linear Currents in Arbitrary Relative Positions and Directions

We derive an analytical formula for the Lorentz force and torque between 1-D linear current elements in arbitrary relative positions explicitly without remaining integral. A circuit is represented as the links of linear elements, and the force and torque on an element are represented as equivalent n...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on magnetics 2018-08, Vol.54 (8), p.1-16
Hauptverfasser: Kawai, Tsubasa, Inamori, Takaya, Hori, Koichi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 16
container_issue 8
container_start_page 1
container_title IEEE transactions on magnetics
container_volume 54
creator Kawai, Tsubasa
Inamori, Takaya
Hori, Koichi
description We derive an analytical formula for the Lorentz force and torque between 1-D linear current elements in arbitrary relative positions explicitly without remaining integral. A circuit is represented as the links of linear elements, and the force and torque on an element are represented as equivalent nodal forces on either side of it. We then treat the circuit as a link mechanism. Furthermore, we consider the singularity that appears in connected elements in a single circuit due to zero distance and avoid it using an approximation with a small radius. This singularity treatment makes the formula applicable even for calculation of the partial force from the entire circuit. Since the formula does not require numerical integration, it can reduce computation time. The accuracy of the approximation is also evaluated by comparing our calculations with the existing experimental results in the literature and numerical integrations.
doi_str_mv 10.1109/TMAG.2018.2841382
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2117050046</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8383715</ieee_id><sourcerecordid>2117050046</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-2907bc697c982058b3c09ccf4dba73ba106a42f7e2954701b240f599a66765b63</originalsourceid><addsrcrecordid>eNo9kF1LwzAUhoMoOD9-gHgT8LrzJE3a5nJubgodiszrkGankFHbmWTK_PW2bnh1eDnPe-A8hNwwGDMG6n61nCzGHFgx5oVgacFPyIgpwRKATJ2SEfSrRIlMnJOLEDZ9FJLBiLhJa5p9dNY0tOw8tvGHzjtvkS67NTb0AeM3YktZMqOla9F4Ot35gQvUtXTiKxe98Xv6ho2J7gvpaxdcdF0bqGnXdOY82r94Rc5q0wS8Ps5L8j5_XE2fkvJl8TydlIlNpYoJV5BXNlO5VQUHWVSpBWVtLdaVydPKMMiM4HWOXEmRA6u4gFoqZbIsz2SVpZfk7nB367vPHYaoN93O918GzRnLQQKIgWIHyvouBI-13nr30T-iGejBqB6M6sGoPhrtO7eHjkPEf75IizRnMv0FhN5xLw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2117050046</pqid></control><display><type>article</type><title>Analytical Lorentz Force Model Between 1-D Linear Currents in Arbitrary Relative Positions and Directions</title><source>IEEE Electronic Library (IEL)</source><creator>Kawai, Tsubasa ; Inamori, Takaya ; Hori, Koichi</creator><creatorcontrib>Kawai, Tsubasa ; Inamori, Takaya ; Hori, Koichi</creatorcontrib><description>We derive an analytical formula for the Lorentz force and torque between 1-D linear current elements in arbitrary relative positions explicitly without remaining integral. A circuit is represented as the links of linear elements, and the force and torque on an element are represented as equivalent nodal forces on either side of it. We then treat the circuit as a link mechanism. Furthermore, we consider the singularity that appears in connected elements in a single circuit due to zero distance and avoid it using an approximation with a small radius. This singularity treatment makes the formula applicable even for calculation of the partial force from the entire circuit. Since the formula does not require numerical integration, it can reduce computation time. The accuracy of the approximation is also evaluated by comparing our calculations with the existing experimental results in the literature and numerical integrations.</description><identifier>ISSN: 0018-9464</identifier><identifier>EISSN: 1941-0069</identifier><identifier>DOI: 10.1109/TMAG.2018.2841382</identifier><identifier>CODEN: IEMGAQ</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>1-D current element ; analytical integration ; Analytical models ; Approximation ; Circuits ; Force ; Lorentz covariance ; Lorentz force ; Magnetic circuits ; Magnetic forces ; Magnetism ; Mathematical analysis ; Mathematical model ; Mathematical models ; Numerical integration ; singularity treatment ; Torque</subject><ispartof>IEEE transactions on magnetics, 2018-08, Vol.54 (8), p.1-16</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-2907bc697c982058b3c09ccf4dba73ba106a42f7e2954701b240f599a66765b63</citedby><cites>FETCH-LOGICAL-c359t-2907bc697c982058b3c09ccf4dba73ba106a42f7e2954701b240f599a66765b63</cites><orcidid>0000-0003-3109-8285 ; 0000-0002-0910-280X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8383715$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>315,781,785,797,27928,27929,54762</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8383715$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Kawai, Tsubasa</creatorcontrib><creatorcontrib>Inamori, Takaya</creatorcontrib><creatorcontrib>Hori, Koichi</creatorcontrib><title>Analytical Lorentz Force Model Between 1-D Linear Currents in Arbitrary Relative Positions and Directions</title><title>IEEE transactions on magnetics</title><addtitle>TMAG</addtitle><description>We derive an analytical formula for the Lorentz force and torque between 1-D linear current elements in arbitrary relative positions explicitly without remaining integral. A circuit is represented as the links of linear elements, and the force and torque on an element are represented as equivalent nodal forces on either side of it. We then treat the circuit as a link mechanism. Furthermore, we consider the singularity that appears in connected elements in a single circuit due to zero distance and avoid it using an approximation with a small radius. This singularity treatment makes the formula applicable even for calculation of the partial force from the entire circuit. Since the formula does not require numerical integration, it can reduce computation time. The accuracy of the approximation is also evaluated by comparing our calculations with the existing experimental results in the literature and numerical integrations.</description><subject>1-D current element</subject><subject>analytical integration</subject><subject>Analytical models</subject><subject>Approximation</subject><subject>Circuits</subject><subject>Force</subject><subject>Lorentz covariance</subject><subject>Lorentz force</subject><subject>Magnetic circuits</subject><subject>Magnetic forces</subject><subject>Magnetism</subject><subject>Mathematical analysis</subject><subject>Mathematical model</subject><subject>Mathematical models</subject><subject>Numerical integration</subject><subject>singularity treatment</subject><subject>Torque</subject><issn>0018-9464</issn><issn>1941-0069</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kF1LwzAUhoMoOD9-gHgT8LrzJE3a5nJubgodiszrkGankFHbmWTK_PW2bnh1eDnPe-A8hNwwGDMG6n61nCzGHFgx5oVgacFPyIgpwRKATJ2SEfSrRIlMnJOLEDZ9FJLBiLhJa5p9dNY0tOw8tvGHzjtvkS67NTb0AeM3YktZMqOla9F4Ot35gQvUtXTiKxe98Xv6ho2J7gvpaxdcdF0bqGnXdOY82r94Rc5q0wS8Ps5L8j5_XE2fkvJl8TydlIlNpYoJV5BXNlO5VQUHWVSpBWVtLdaVydPKMMiM4HWOXEmRA6u4gFoqZbIsz2SVpZfk7nB367vPHYaoN93O918GzRnLQQKIgWIHyvouBI-13nr30T-iGejBqB6M6sGoPhrtO7eHjkPEf75IizRnMv0FhN5xLw</recordid><startdate>20180801</startdate><enddate>20180801</enddate><creator>Kawai, Tsubasa</creator><creator>Inamori, Takaya</creator><creator>Hori, Koichi</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-3109-8285</orcidid><orcidid>https://orcid.org/0000-0002-0910-280X</orcidid></search><sort><creationdate>20180801</creationdate><title>Analytical Lorentz Force Model Between 1-D Linear Currents in Arbitrary Relative Positions and Directions</title><author>Kawai, Tsubasa ; Inamori, Takaya ; Hori, Koichi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-2907bc697c982058b3c09ccf4dba73ba106a42f7e2954701b240f599a66765b63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>1-D current element</topic><topic>analytical integration</topic><topic>Analytical models</topic><topic>Approximation</topic><topic>Circuits</topic><topic>Force</topic><topic>Lorentz covariance</topic><topic>Lorentz force</topic><topic>Magnetic circuits</topic><topic>Magnetic forces</topic><topic>Magnetism</topic><topic>Mathematical analysis</topic><topic>Mathematical model</topic><topic>Mathematical models</topic><topic>Numerical integration</topic><topic>singularity treatment</topic><topic>Torque</topic><toplevel>online_resources</toplevel><creatorcontrib>Kawai, Tsubasa</creatorcontrib><creatorcontrib>Inamori, Takaya</creatorcontrib><creatorcontrib>Hori, Koichi</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on magnetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Kawai, Tsubasa</au><au>Inamori, Takaya</au><au>Hori, Koichi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analytical Lorentz Force Model Between 1-D Linear Currents in Arbitrary Relative Positions and Directions</atitle><jtitle>IEEE transactions on magnetics</jtitle><stitle>TMAG</stitle><date>2018-08-01</date><risdate>2018</risdate><volume>54</volume><issue>8</issue><spage>1</spage><epage>16</epage><pages>1-16</pages><issn>0018-9464</issn><eissn>1941-0069</eissn><coden>IEMGAQ</coden><abstract>We derive an analytical formula for the Lorentz force and torque between 1-D linear current elements in arbitrary relative positions explicitly without remaining integral. A circuit is represented as the links of linear elements, and the force and torque on an element are represented as equivalent nodal forces on either side of it. We then treat the circuit as a link mechanism. Furthermore, we consider the singularity that appears in connected elements in a single circuit due to zero distance and avoid it using an approximation with a small radius. This singularity treatment makes the formula applicable even for calculation of the partial force from the entire circuit. Since the formula does not require numerical integration, it can reduce computation time. The accuracy of the approximation is also evaluated by comparing our calculations with the existing experimental results in the literature and numerical integrations.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TMAG.2018.2841382</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0003-3109-8285</orcidid><orcidid>https://orcid.org/0000-0002-0910-280X</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9464
ispartof IEEE transactions on magnetics, 2018-08, Vol.54 (8), p.1-16
issn 0018-9464
1941-0069
language eng
recordid cdi_proquest_journals_2117050046
source IEEE Electronic Library (IEL)
subjects 1-D current element
analytical integration
Analytical models
Approximation
Circuits
Force
Lorentz covariance
Lorentz force
Magnetic circuits
Magnetic forces
Magnetism
Mathematical analysis
Mathematical model
Mathematical models
Numerical integration
singularity treatment
Torque
title Analytical Lorentz Force Model Between 1-D Linear Currents in Arbitrary Relative Positions and Directions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T14%3A47%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analytical%20Lorentz%20Force%20Model%20Between%201-D%20Linear%20Currents%20in%20Arbitrary%20Relative%20Positions%20and%20Directions&rft.jtitle=IEEE%20transactions%20on%20magnetics&rft.au=Kawai,%20Tsubasa&rft.date=2018-08-01&rft.volume=54&rft.issue=8&rft.spage=1&rft.epage=16&rft.pages=1-16&rft.issn=0018-9464&rft.eissn=1941-0069&rft.coden=IEMGAQ&rft_id=info:doi/10.1109/TMAG.2018.2841382&rft_dat=%3Cproquest_RIE%3E2117050046%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2117050046&rft_id=info:pmid/&rft_ieee_id=8383715&rfr_iscdi=true