The electromagnetic properties and microwave absorbing performance of titanium carbide attached single-walled carbon nanotubes

The titanium carbide nanoparticles attached single-walled carbon nanotubes (TiC-SWCNTs) were mass-produced by an argon–hydrogen direct current arc discharge method using TiO 2 and Fe added carbon rod as anode. The composites of TiC-SWCNTs in the paraffin matrix were investigated in the frequency ran...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials science. Materials in electronics 2018-12, Vol.29 (23), p.20260-20270
Hauptverfasser: Yan, Mouhui, Zhang, Yifan, Fang, Yanghao, Yu, Liming, Liu, Yi, Zhao, Xinluo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 20270
container_issue 23
container_start_page 20260
container_title Journal of materials science. Materials in electronics
container_volume 29
creator Yan, Mouhui
Zhang, Yifan
Fang, Yanghao
Yu, Liming
Liu, Yi
Zhao, Xinluo
description The titanium carbide nanoparticles attached single-walled carbon nanotubes (TiC-SWCNTs) were mass-produced by an argon–hydrogen direct current arc discharge method using TiO 2 and Fe added carbon rod as anode. The composites of TiC-SWCNTs in the paraffin matrix were investigated in the frequency range of 2–18 GHz by a vector network analyzer. The electromagnetic (EM) parameter and reflection loss (RL) properties were simulated by transmission line theory and the microwave absorption mechanisms for the dielectric loss and magnetic loss were discussed in detail. The results indicate that the TiC-SWCNTs prepared by 4 at.% TiO 2 added anode exhibited the best microwave absorption property due to better impedance matching, whose RL value reached − 45.6 dB at 14.2 GHz and the absorption bandwidth below − 10 dB was up to 5.7 GHz. Furthermore, the matching thickness of the absorber is 1.8 mm and the filler loading of TiC-SWCNTs in the matrix is 20 wt%. It is expected that the TiC attached SWCNTs nanocomposite will be an excellent candidate for microwave absorption and provide a new idea to prepare weak magnetic EM wave absorber.
doi_str_mv 10.1007/s10854-018-0159-x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2117030943</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2117030943</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-216c7f4204acac6f2a6f5b9b107e3a16ff6d8cfb2fe2c6db15744df3629d13af3</originalsourceid><addsrcrecordid>eNp1kEtLxDAUhYMoOD5-gLuA62peTduliC8Q3Ci4C7fpzVhpkzHJ-Nj4280wgisXl3A537nhHEJOODvjjDXnibO2VhXjbZm6qz53yILXjaxUK553yYJ1dVOpWoh9cpDSK2NMK9kuyPfjC1Kc0OYYZlh6zKOlqxhWGPOIiYIf6DzaGD7gHSn0KcR-9EtadBfiDN4iDY7mMYMf1zO1UPShkDmDfcGBpkJPWH3ANJVtIwdPPfiQ1z2mI7LnYEp4_Psekqfrq8fL2-r-4ebu8uK-spLrXAmubeOUYAosWO0EaFf3Xc9ZgxK4dk4PrXW9cCisHvqSXKnBSS26gUtw8pCcbu-WaG9rTNm8hnX05UsjOG-YZJ2SheJbquRNKaIzqzjOEL8MZ2ZTs9nWbErNZlOz-SwesfWkwvolxr_L_5t-AIrPhJo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2117030943</pqid></control><display><type>article</type><title>The electromagnetic properties and microwave absorbing performance of titanium carbide attached single-walled carbon nanotubes</title><source>Springer Nature - Complete Springer Journals</source><creator>Yan, Mouhui ; Zhang, Yifan ; Fang, Yanghao ; Yu, Liming ; Liu, Yi ; Zhao, Xinluo</creator><creatorcontrib>Yan, Mouhui ; Zhang, Yifan ; Fang, Yanghao ; Yu, Liming ; Liu, Yi ; Zhao, Xinluo</creatorcontrib><description>The titanium carbide nanoparticles attached single-walled carbon nanotubes (TiC-SWCNTs) were mass-produced by an argon–hydrogen direct current arc discharge method using TiO 2 and Fe added carbon rod as anode. The composites of TiC-SWCNTs in the paraffin matrix were investigated in the frequency range of 2–18 GHz by a vector network analyzer. The electromagnetic (EM) parameter and reflection loss (RL) properties were simulated by transmission line theory and the microwave absorption mechanisms for the dielectric loss and magnetic loss were discussed in detail. The results indicate that the TiC-SWCNTs prepared by 4 at.% TiO 2 added anode exhibited the best microwave absorption property due to better impedance matching, whose RL value reached − 45.6 dB at 14.2 GHz and the absorption bandwidth below − 10 dB was up to 5.7 GHz. Furthermore, the matching thickness of the absorber is 1.8 mm and the filler loading of TiC-SWCNTs in the matrix is 20 wt%. It is expected that the TiC attached SWCNTs nanocomposite will be an excellent candidate for microwave absorption and provide a new idea to prepare weak magnetic EM wave absorber.</description><identifier>ISSN: 0957-4522</identifier><identifier>EISSN: 1573-482X</identifier><identifier>DOI: 10.1007/s10854-018-0159-x</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Absorbers ; Anodes ; Carbon ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Computer simulation ; Dielectric loss ; Direct current ; Electric arcs ; Electromagnetic properties ; Hydrogen storage ; Impedance matching ; Materials Science ; Microwave absorption ; Nanocomposites ; Nanoparticles ; Nanotubes ; Network analysers ; Optical and Electronic Materials ; Paraffins ; Single wall carbon nanotubes ; Titanium carbide ; Titanium dioxide ; Transmission lines</subject><ispartof>Journal of materials science. Materials in electronics, 2018-12, Vol.29 (23), p.20260-20270</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2018</rights><rights>Journal of Materials Science: Materials in Electronics is a copyright of Springer, (2018). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-216c7f4204acac6f2a6f5b9b107e3a16ff6d8cfb2fe2c6db15744df3629d13af3</citedby><cites>FETCH-LOGICAL-c316t-216c7f4204acac6f2a6f5b9b107e3a16ff6d8cfb2fe2c6db15744df3629d13af3</cites><orcidid>0000-0003-2139-8583</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10854-018-0159-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10854-018-0159-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27915,27916,41479,42548,51310</link.rule.ids></links><search><creatorcontrib>Yan, Mouhui</creatorcontrib><creatorcontrib>Zhang, Yifan</creatorcontrib><creatorcontrib>Fang, Yanghao</creatorcontrib><creatorcontrib>Yu, Liming</creatorcontrib><creatorcontrib>Liu, Yi</creatorcontrib><creatorcontrib>Zhao, Xinluo</creatorcontrib><title>The electromagnetic properties and microwave absorbing performance of titanium carbide attached single-walled carbon nanotubes</title><title>Journal of materials science. Materials in electronics</title><addtitle>J Mater Sci: Mater Electron</addtitle><description>The titanium carbide nanoparticles attached single-walled carbon nanotubes (TiC-SWCNTs) were mass-produced by an argon–hydrogen direct current arc discharge method using TiO 2 and Fe added carbon rod as anode. The composites of TiC-SWCNTs in the paraffin matrix were investigated in the frequency range of 2–18 GHz by a vector network analyzer. The electromagnetic (EM) parameter and reflection loss (RL) properties were simulated by transmission line theory and the microwave absorption mechanisms for the dielectric loss and magnetic loss were discussed in detail. The results indicate that the TiC-SWCNTs prepared by 4 at.% TiO 2 added anode exhibited the best microwave absorption property due to better impedance matching, whose RL value reached − 45.6 dB at 14.2 GHz and the absorption bandwidth below − 10 dB was up to 5.7 GHz. Furthermore, the matching thickness of the absorber is 1.8 mm and the filler loading of TiC-SWCNTs in the matrix is 20 wt%. It is expected that the TiC attached SWCNTs nanocomposite will be an excellent candidate for microwave absorption and provide a new idea to prepare weak magnetic EM wave absorber.</description><subject>Absorbers</subject><subject>Anodes</subject><subject>Carbon</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Computer simulation</subject><subject>Dielectric loss</subject><subject>Direct current</subject><subject>Electric arcs</subject><subject>Electromagnetic properties</subject><subject>Hydrogen storage</subject><subject>Impedance matching</subject><subject>Materials Science</subject><subject>Microwave absorption</subject><subject>Nanocomposites</subject><subject>Nanoparticles</subject><subject>Nanotubes</subject><subject>Network analysers</subject><subject>Optical and Electronic Materials</subject><subject>Paraffins</subject><subject>Single wall carbon nanotubes</subject><subject>Titanium carbide</subject><subject>Titanium dioxide</subject><subject>Transmission lines</subject><issn>0957-4522</issn><issn>1573-482X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp1kEtLxDAUhYMoOD5-gLuA62peTduliC8Q3Ci4C7fpzVhpkzHJ-Nj4280wgisXl3A537nhHEJOODvjjDXnibO2VhXjbZm6qz53yILXjaxUK553yYJ1dVOpWoh9cpDSK2NMK9kuyPfjC1Kc0OYYZlh6zKOlqxhWGPOIiYIf6DzaGD7gHSn0KcR-9EtadBfiDN4iDY7mMYMf1zO1UPShkDmDfcGBpkJPWH3ANJVtIwdPPfiQ1z2mI7LnYEp4_Psekqfrq8fL2-r-4ebu8uK-spLrXAmubeOUYAosWO0EaFf3Xc9ZgxK4dk4PrXW9cCisHvqSXKnBSS26gUtw8pCcbu-WaG9rTNm8hnX05UsjOG-YZJ2SheJbquRNKaIzqzjOEL8MZ2ZTs9nWbErNZlOz-SwesfWkwvolxr_L_5t-AIrPhJo</recordid><startdate>20181201</startdate><enddate>20181201</enddate><creator>Yan, Mouhui</creator><creator>Zhang, Yifan</creator><creator>Fang, Yanghao</creator><creator>Yu, Liming</creator><creator>Liu, Yi</creator><creator>Zhao, Xinluo</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>S0W</scope><orcidid>https://orcid.org/0000-0003-2139-8583</orcidid></search><sort><creationdate>20181201</creationdate><title>The electromagnetic properties and microwave absorbing performance of titanium carbide attached single-walled carbon nanotubes</title><author>Yan, Mouhui ; Zhang, Yifan ; Fang, Yanghao ; Yu, Liming ; Liu, Yi ; Zhao, Xinluo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-216c7f4204acac6f2a6f5b9b107e3a16ff6d8cfb2fe2c6db15744df3629d13af3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Absorbers</topic><topic>Anodes</topic><topic>Carbon</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Computer simulation</topic><topic>Dielectric loss</topic><topic>Direct current</topic><topic>Electric arcs</topic><topic>Electromagnetic properties</topic><topic>Hydrogen storage</topic><topic>Impedance matching</topic><topic>Materials Science</topic><topic>Microwave absorption</topic><topic>Nanocomposites</topic><topic>Nanoparticles</topic><topic>Nanotubes</topic><topic>Network analysers</topic><topic>Optical and Electronic Materials</topic><topic>Paraffins</topic><topic>Single wall carbon nanotubes</topic><topic>Titanium carbide</topic><topic>Titanium dioxide</topic><topic>Transmission lines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yan, Mouhui</creatorcontrib><creatorcontrib>Zhang, Yifan</creatorcontrib><creatorcontrib>Fang, Yanghao</creatorcontrib><creatorcontrib>Yu, Liming</creatorcontrib><creatorcontrib>Liu, Yi</creatorcontrib><creatorcontrib>Zhao, Xinluo</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DELNET Engineering &amp; Technology Collection</collection><jtitle>Journal of materials science. Materials in electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yan, Mouhui</au><au>Zhang, Yifan</au><au>Fang, Yanghao</au><au>Yu, Liming</au><au>Liu, Yi</au><au>Zhao, Xinluo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The electromagnetic properties and microwave absorbing performance of titanium carbide attached single-walled carbon nanotubes</atitle><jtitle>Journal of materials science. Materials in electronics</jtitle><stitle>J Mater Sci: Mater Electron</stitle><date>2018-12-01</date><risdate>2018</risdate><volume>29</volume><issue>23</issue><spage>20260</spage><epage>20270</epage><pages>20260-20270</pages><issn>0957-4522</issn><eissn>1573-482X</eissn><abstract>The titanium carbide nanoparticles attached single-walled carbon nanotubes (TiC-SWCNTs) were mass-produced by an argon–hydrogen direct current arc discharge method using TiO 2 and Fe added carbon rod as anode. The composites of TiC-SWCNTs in the paraffin matrix were investigated in the frequency range of 2–18 GHz by a vector network analyzer. The electromagnetic (EM) parameter and reflection loss (RL) properties were simulated by transmission line theory and the microwave absorption mechanisms for the dielectric loss and magnetic loss were discussed in detail. The results indicate that the TiC-SWCNTs prepared by 4 at.% TiO 2 added anode exhibited the best microwave absorption property due to better impedance matching, whose RL value reached − 45.6 dB at 14.2 GHz and the absorption bandwidth below − 10 dB was up to 5.7 GHz. Furthermore, the matching thickness of the absorber is 1.8 mm and the filler loading of TiC-SWCNTs in the matrix is 20 wt%. It is expected that the TiC attached SWCNTs nanocomposite will be an excellent candidate for microwave absorption and provide a new idea to prepare weak magnetic EM wave absorber.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10854-018-0159-x</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-2139-8583</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0957-4522
ispartof Journal of materials science. Materials in electronics, 2018-12, Vol.29 (23), p.20260-20270
issn 0957-4522
1573-482X
language eng
recordid cdi_proquest_journals_2117030943
source Springer Nature - Complete Springer Journals
subjects Absorbers
Anodes
Carbon
Characterization and Evaluation of Materials
Chemistry and Materials Science
Computer simulation
Dielectric loss
Direct current
Electric arcs
Electromagnetic properties
Hydrogen storage
Impedance matching
Materials Science
Microwave absorption
Nanocomposites
Nanoparticles
Nanotubes
Network analysers
Optical and Electronic Materials
Paraffins
Single wall carbon nanotubes
Titanium carbide
Titanium dioxide
Transmission lines
title The electromagnetic properties and microwave absorbing performance of titanium carbide attached single-walled carbon nanotubes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T04%3A51%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20electromagnetic%20properties%20and%20microwave%20absorbing%20performance%20of%20titanium%20carbide%20attached%20single-walled%20carbon%20nanotubes&rft.jtitle=Journal%20of%20materials%20science.%20Materials%20in%20electronics&rft.au=Yan,%20Mouhui&rft.date=2018-12-01&rft.volume=29&rft.issue=23&rft.spage=20260&rft.epage=20270&rft.pages=20260-20270&rft.issn=0957-4522&rft.eissn=1573-482X&rft_id=info:doi/10.1007/s10854-018-0159-x&rft_dat=%3Cproquest_cross%3E2117030943%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2117030943&rft_id=info:pmid/&rfr_iscdi=true