The electromagnetic properties and microwave absorbing performance of titanium carbide attached single-walled carbon nanotubes
The titanium carbide nanoparticles attached single-walled carbon nanotubes (TiC-SWCNTs) were mass-produced by an argon–hydrogen direct current arc discharge method using TiO 2 and Fe added carbon rod as anode. The composites of TiC-SWCNTs in the paraffin matrix were investigated in the frequency ran...
Gespeichert in:
Veröffentlicht in: | Journal of materials science. Materials in electronics 2018-12, Vol.29 (23), p.20260-20270 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 20270 |
---|---|
container_issue | 23 |
container_start_page | 20260 |
container_title | Journal of materials science. Materials in electronics |
container_volume | 29 |
creator | Yan, Mouhui Zhang, Yifan Fang, Yanghao Yu, Liming Liu, Yi Zhao, Xinluo |
description | The titanium carbide nanoparticles attached single-walled carbon nanotubes (TiC-SWCNTs) were mass-produced by an argon–hydrogen direct current arc discharge method using TiO
2
and Fe added carbon rod as anode. The composites of TiC-SWCNTs in the paraffin matrix were investigated in the frequency range of 2–18 GHz by a vector network analyzer. The electromagnetic (EM) parameter and reflection loss (RL) properties were simulated by transmission line theory and the microwave absorption mechanisms for the dielectric loss and magnetic loss were discussed in detail. The results indicate that the TiC-SWCNTs prepared by 4 at.% TiO
2
added anode exhibited the best microwave absorption property due to better impedance matching, whose RL value reached − 45.6 dB at 14.2 GHz and the absorption bandwidth below − 10 dB was up to 5.7 GHz. Furthermore, the matching thickness of the absorber is 1.8 mm and the filler loading of TiC-SWCNTs in the matrix is 20 wt%. It is expected that the TiC attached SWCNTs nanocomposite will be an excellent candidate for microwave absorption and provide a new idea to prepare weak magnetic EM wave absorber. |
doi_str_mv | 10.1007/s10854-018-0159-x |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2117030943</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2117030943</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-216c7f4204acac6f2a6f5b9b107e3a16ff6d8cfb2fe2c6db15744df3629d13af3</originalsourceid><addsrcrecordid>eNp1kEtLxDAUhYMoOD5-gLuA62peTduliC8Q3Ci4C7fpzVhpkzHJ-Nj4280wgisXl3A537nhHEJOODvjjDXnibO2VhXjbZm6qz53yILXjaxUK553yYJ1dVOpWoh9cpDSK2NMK9kuyPfjC1Kc0OYYZlh6zKOlqxhWGPOIiYIf6DzaGD7gHSn0KcR-9EtadBfiDN4iDY7mMYMf1zO1UPShkDmDfcGBpkJPWH3ANJVtIwdPPfiQ1z2mI7LnYEp4_Psekqfrq8fL2-r-4ebu8uK-spLrXAmubeOUYAosWO0EaFf3Xc9ZgxK4dk4PrXW9cCisHvqSXKnBSS26gUtw8pCcbu-WaG9rTNm8hnX05UsjOG-YZJ2SheJbquRNKaIzqzjOEL8MZ2ZTs9nWbErNZlOz-SwesfWkwvolxr_L_5t-AIrPhJo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2117030943</pqid></control><display><type>article</type><title>The electromagnetic properties and microwave absorbing performance of titanium carbide attached single-walled carbon nanotubes</title><source>Springer Nature - Complete Springer Journals</source><creator>Yan, Mouhui ; Zhang, Yifan ; Fang, Yanghao ; Yu, Liming ; Liu, Yi ; Zhao, Xinluo</creator><creatorcontrib>Yan, Mouhui ; Zhang, Yifan ; Fang, Yanghao ; Yu, Liming ; Liu, Yi ; Zhao, Xinluo</creatorcontrib><description>The titanium carbide nanoparticles attached single-walled carbon nanotubes (TiC-SWCNTs) were mass-produced by an argon–hydrogen direct current arc discharge method using TiO
2
and Fe added carbon rod as anode. The composites of TiC-SWCNTs in the paraffin matrix were investigated in the frequency range of 2–18 GHz by a vector network analyzer. The electromagnetic (EM) parameter and reflection loss (RL) properties were simulated by transmission line theory and the microwave absorption mechanisms for the dielectric loss and magnetic loss were discussed in detail. The results indicate that the TiC-SWCNTs prepared by 4 at.% TiO
2
added anode exhibited the best microwave absorption property due to better impedance matching, whose RL value reached − 45.6 dB at 14.2 GHz and the absorption bandwidth below − 10 dB was up to 5.7 GHz. Furthermore, the matching thickness of the absorber is 1.8 mm and the filler loading of TiC-SWCNTs in the matrix is 20 wt%. It is expected that the TiC attached SWCNTs nanocomposite will be an excellent candidate for microwave absorption and provide a new idea to prepare weak magnetic EM wave absorber.</description><identifier>ISSN: 0957-4522</identifier><identifier>EISSN: 1573-482X</identifier><identifier>DOI: 10.1007/s10854-018-0159-x</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Absorbers ; Anodes ; Carbon ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Computer simulation ; Dielectric loss ; Direct current ; Electric arcs ; Electromagnetic properties ; Hydrogen storage ; Impedance matching ; Materials Science ; Microwave absorption ; Nanocomposites ; Nanoparticles ; Nanotubes ; Network analysers ; Optical and Electronic Materials ; Paraffins ; Single wall carbon nanotubes ; Titanium carbide ; Titanium dioxide ; Transmission lines</subject><ispartof>Journal of materials science. Materials in electronics, 2018-12, Vol.29 (23), p.20260-20270</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2018</rights><rights>Journal of Materials Science: Materials in Electronics is a copyright of Springer, (2018). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-216c7f4204acac6f2a6f5b9b107e3a16ff6d8cfb2fe2c6db15744df3629d13af3</citedby><cites>FETCH-LOGICAL-c316t-216c7f4204acac6f2a6f5b9b107e3a16ff6d8cfb2fe2c6db15744df3629d13af3</cites><orcidid>0000-0003-2139-8583</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10854-018-0159-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10854-018-0159-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27915,27916,41479,42548,51310</link.rule.ids></links><search><creatorcontrib>Yan, Mouhui</creatorcontrib><creatorcontrib>Zhang, Yifan</creatorcontrib><creatorcontrib>Fang, Yanghao</creatorcontrib><creatorcontrib>Yu, Liming</creatorcontrib><creatorcontrib>Liu, Yi</creatorcontrib><creatorcontrib>Zhao, Xinluo</creatorcontrib><title>The electromagnetic properties and microwave absorbing performance of titanium carbide attached single-walled carbon nanotubes</title><title>Journal of materials science. Materials in electronics</title><addtitle>J Mater Sci: Mater Electron</addtitle><description>The titanium carbide nanoparticles attached single-walled carbon nanotubes (TiC-SWCNTs) were mass-produced by an argon–hydrogen direct current arc discharge method using TiO
2
and Fe added carbon rod as anode. The composites of TiC-SWCNTs in the paraffin matrix were investigated in the frequency range of 2–18 GHz by a vector network analyzer. The electromagnetic (EM) parameter and reflection loss (RL) properties were simulated by transmission line theory and the microwave absorption mechanisms for the dielectric loss and magnetic loss were discussed in detail. The results indicate that the TiC-SWCNTs prepared by 4 at.% TiO
2
added anode exhibited the best microwave absorption property due to better impedance matching, whose RL value reached − 45.6 dB at 14.2 GHz and the absorption bandwidth below − 10 dB was up to 5.7 GHz. Furthermore, the matching thickness of the absorber is 1.8 mm and the filler loading of TiC-SWCNTs in the matrix is 20 wt%. It is expected that the TiC attached SWCNTs nanocomposite will be an excellent candidate for microwave absorption and provide a new idea to prepare weak magnetic EM wave absorber.</description><subject>Absorbers</subject><subject>Anodes</subject><subject>Carbon</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Computer simulation</subject><subject>Dielectric loss</subject><subject>Direct current</subject><subject>Electric arcs</subject><subject>Electromagnetic properties</subject><subject>Hydrogen storage</subject><subject>Impedance matching</subject><subject>Materials Science</subject><subject>Microwave absorption</subject><subject>Nanocomposites</subject><subject>Nanoparticles</subject><subject>Nanotubes</subject><subject>Network analysers</subject><subject>Optical and Electronic Materials</subject><subject>Paraffins</subject><subject>Single wall carbon nanotubes</subject><subject>Titanium carbide</subject><subject>Titanium dioxide</subject><subject>Transmission lines</subject><issn>0957-4522</issn><issn>1573-482X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp1kEtLxDAUhYMoOD5-gLuA62peTduliC8Q3Ci4C7fpzVhpkzHJ-Nj4280wgisXl3A537nhHEJOODvjjDXnibO2VhXjbZm6qz53yILXjaxUK553yYJ1dVOpWoh9cpDSK2NMK9kuyPfjC1Kc0OYYZlh6zKOlqxhWGPOIiYIf6DzaGD7gHSn0KcR-9EtadBfiDN4iDY7mMYMf1zO1UPShkDmDfcGBpkJPWH3ANJVtIwdPPfiQ1z2mI7LnYEp4_Psekqfrq8fL2-r-4ebu8uK-spLrXAmubeOUYAosWO0EaFf3Xc9ZgxK4dk4PrXW9cCisHvqSXKnBSS26gUtw8pCcbu-WaG9rTNm8hnX05UsjOG-YZJ2SheJbquRNKaIzqzjOEL8MZ2ZTs9nWbErNZlOz-SwesfWkwvolxr_L_5t-AIrPhJo</recordid><startdate>20181201</startdate><enddate>20181201</enddate><creator>Yan, Mouhui</creator><creator>Zhang, Yifan</creator><creator>Fang, Yanghao</creator><creator>Yu, Liming</creator><creator>Liu, Yi</creator><creator>Zhao, Xinluo</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>S0W</scope><orcidid>https://orcid.org/0000-0003-2139-8583</orcidid></search><sort><creationdate>20181201</creationdate><title>The electromagnetic properties and microwave absorbing performance of titanium carbide attached single-walled carbon nanotubes</title><author>Yan, Mouhui ; Zhang, Yifan ; Fang, Yanghao ; Yu, Liming ; Liu, Yi ; Zhao, Xinluo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-216c7f4204acac6f2a6f5b9b107e3a16ff6d8cfb2fe2c6db15744df3629d13af3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Absorbers</topic><topic>Anodes</topic><topic>Carbon</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Computer simulation</topic><topic>Dielectric loss</topic><topic>Direct current</topic><topic>Electric arcs</topic><topic>Electromagnetic properties</topic><topic>Hydrogen storage</topic><topic>Impedance matching</topic><topic>Materials Science</topic><topic>Microwave absorption</topic><topic>Nanocomposites</topic><topic>Nanoparticles</topic><topic>Nanotubes</topic><topic>Network analysers</topic><topic>Optical and Electronic Materials</topic><topic>Paraffins</topic><topic>Single wall carbon nanotubes</topic><topic>Titanium carbide</topic><topic>Titanium dioxide</topic><topic>Transmission lines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yan, Mouhui</creatorcontrib><creatorcontrib>Zhang, Yifan</creatorcontrib><creatorcontrib>Fang, Yanghao</creatorcontrib><creatorcontrib>Yu, Liming</creatorcontrib><creatorcontrib>Liu, Yi</creatorcontrib><creatorcontrib>Zhao, Xinluo</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DELNET Engineering & Technology Collection</collection><jtitle>Journal of materials science. Materials in electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yan, Mouhui</au><au>Zhang, Yifan</au><au>Fang, Yanghao</au><au>Yu, Liming</au><au>Liu, Yi</au><au>Zhao, Xinluo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The electromagnetic properties and microwave absorbing performance of titanium carbide attached single-walled carbon nanotubes</atitle><jtitle>Journal of materials science. Materials in electronics</jtitle><stitle>J Mater Sci: Mater Electron</stitle><date>2018-12-01</date><risdate>2018</risdate><volume>29</volume><issue>23</issue><spage>20260</spage><epage>20270</epage><pages>20260-20270</pages><issn>0957-4522</issn><eissn>1573-482X</eissn><abstract>The titanium carbide nanoparticles attached single-walled carbon nanotubes (TiC-SWCNTs) were mass-produced by an argon–hydrogen direct current arc discharge method using TiO
2
and Fe added carbon rod as anode. The composites of TiC-SWCNTs in the paraffin matrix were investigated in the frequency range of 2–18 GHz by a vector network analyzer. The electromagnetic (EM) parameter and reflection loss (RL) properties were simulated by transmission line theory and the microwave absorption mechanisms for the dielectric loss and magnetic loss were discussed in detail. The results indicate that the TiC-SWCNTs prepared by 4 at.% TiO
2
added anode exhibited the best microwave absorption property due to better impedance matching, whose RL value reached − 45.6 dB at 14.2 GHz and the absorption bandwidth below − 10 dB was up to 5.7 GHz. Furthermore, the matching thickness of the absorber is 1.8 mm and the filler loading of TiC-SWCNTs in the matrix is 20 wt%. It is expected that the TiC attached SWCNTs nanocomposite will be an excellent candidate for microwave absorption and provide a new idea to prepare weak magnetic EM wave absorber.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10854-018-0159-x</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-2139-8583</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0957-4522 |
ispartof | Journal of materials science. Materials in electronics, 2018-12, Vol.29 (23), p.20260-20270 |
issn | 0957-4522 1573-482X |
language | eng |
recordid | cdi_proquest_journals_2117030943 |
source | Springer Nature - Complete Springer Journals |
subjects | Absorbers Anodes Carbon Characterization and Evaluation of Materials Chemistry and Materials Science Computer simulation Dielectric loss Direct current Electric arcs Electromagnetic properties Hydrogen storage Impedance matching Materials Science Microwave absorption Nanocomposites Nanoparticles Nanotubes Network analysers Optical and Electronic Materials Paraffins Single wall carbon nanotubes Titanium carbide Titanium dioxide Transmission lines |
title | The electromagnetic properties and microwave absorbing performance of titanium carbide attached single-walled carbon nanotubes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T04%3A51%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20electromagnetic%20properties%20and%20microwave%20absorbing%20performance%20of%20titanium%20carbide%20attached%20single-walled%20carbon%20nanotubes&rft.jtitle=Journal%20of%20materials%20science.%20Materials%20in%20electronics&rft.au=Yan,%20Mouhui&rft.date=2018-12-01&rft.volume=29&rft.issue=23&rft.spage=20260&rft.epage=20270&rft.pages=20260-20270&rft.issn=0957-4522&rft.eissn=1573-482X&rft_id=info:doi/10.1007/s10854-018-0159-x&rft_dat=%3Cproquest_cross%3E2117030943%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2117030943&rft_id=info:pmid/&rfr_iscdi=true |