SLAP: Simultaneous Localization and Planning Under Uncertainty via Dynamic Replanning in Belief Space

Simultaneous localization and planning (SLAP) is a crucial ability for an autonomous robot operating under uncertainty. In its most general form, SLAP induces a continuous partially observable Markov decision process (POMDP), which needs to be repeatedly solved online. This paper addresses this prob...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on robotics 2018-10, Vol.34 (5), p.1195-1214
Hauptverfasser: Agha-mohammadi, Ali-akbar, Agarwal, Saurav, Kim, Sung-Kyun, Chakravorty, Suman, Amato, Nancy M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1214
container_issue 5
container_start_page 1195
container_title IEEE transactions on robotics
container_volume 34
creator Agha-mohammadi, Ali-akbar
Agarwal, Saurav
Kim, Sung-Kyun
Chakravorty, Suman
Amato, Nancy M.
description Simultaneous localization and planning (SLAP) is a crucial ability for an autonomous robot operating under uncertainty. In its most general form, SLAP induces a continuous partially observable Markov decision process (POMDP), which needs to be repeatedly solved online. This paper addresses this problem and proposes a dynamic replanning scheme in belief space. The underlying POMDP, which is continuous in state, action, and observation space, is approximated offline via sampling-based methods, but operates in a replanning loop online to admit local improvements to the coarse offline policy. This construct enables the proposed method to combat changing environments and large localization errors, even when the change alters the homotopy class of the optimal trajectory. It further outperforms the state-of-the-art Feedback-based Information RoadMap (FIRM) method by eliminating unnecessary stabilization steps. Applying belief space planning to physical systems brings with it a plethora of challenges. A key focus of this paper is to implement the proposed planner on a physical robot and show the SLAP solution performance under uncertainty, in changing environments and in the presence of large disturbances, such as a kidnapped robot situation.
doi_str_mv 10.1109/TRO.2018.2838556
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2117014521</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8479330</ieee_id><sourcerecordid>2117014521</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-d5a3d3b89c222c6a81fb4f92bbf35d775a832fdb4a0057b8ae473bc7abd525d73</originalsourceid><addsrcrecordid>eNo9kEtLAzEURoMoWKt7wU3A9dQ8Jp3EXa1PGGjpYx1uMhlJmWZqZkaov94prW7udxfnuxcOQreUjCgl6mG1mI0YoXLEJJdCjM_QgKqUJiQdy_N-F4IlnCh5ia6aZkMISxXhA-SW-WT-iJd-21UtBFd3Dc5rC5X_gdbXAUMo8LyCEHz4xOtQuNhP62ILPrR7_O0BP-8DbL3FC7f7A33AT67yrsTLHVh3jS5KqBp3c8ohWr--rKbvST57-5hO8sQyRdukEMALbqSyjDE7BklLk5aKGVNyUWSZAMlZWZgUCBGZkeDSjBubgSkE6wE-RPfHu7tYf3WuafWm7mLoX2pGaUZoKhjtKXKkbKybJrpS76LfQtxrSvRBpu5l6oNMfZLZV-6OFe-c-8dlminOCf8FxkFw3Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2117014521</pqid></control><display><type>article</type><title>SLAP: Simultaneous Localization and Planning Under Uncertainty via Dynamic Replanning in Belief Space</title><source>IEEE Electronic Library (IEL)</source><creator>Agha-mohammadi, Ali-akbar ; Agarwal, Saurav ; Kim, Sung-Kyun ; Chakravorty, Suman ; Amato, Nancy M.</creator><creatorcontrib>Agha-mohammadi, Ali-akbar ; Agarwal, Saurav ; Kim, Sung-Kyun ; Chakravorty, Suman ; Amato, Nancy M.</creatorcontrib><description>Simultaneous localization and planning (SLAP) is a crucial ability for an autonomous robot operating under uncertainty. In its most general form, SLAP induces a continuous partially observable Markov decision process (POMDP), which needs to be repeatedly solved online. This paper addresses this problem and proposes a dynamic replanning scheme in belief space. The underlying POMDP, which is continuous in state, action, and observation space, is approximated offline via sampling-based methods, but operates in a replanning loop online to admit local improvements to the coarse offline policy. This construct enables the proposed method to combat changing environments and large localization errors, even when the change alters the homotopy class of the optimal trajectory. It further outperforms the state-of-the-art Feedback-based Information RoadMap (FIRM) method by eliminating unnecessary stabilization steps. Applying belief space planning to physical systems brings with it a plethora of challenges. A key focus of this paper is to implement the proposed planner on a physical robot and show the SLAP solution performance under uncertainty, in changing environments and in the presence of large disturbances, such as a kidnapped robot situation.</description><identifier>ISSN: 1552-3098</identifier><identifier>EISSN: 1941-0468</identifier><identifier>DOI: 10.1109/TRO.2018.2838556</identifier><identifier>CODEN: ITREAE</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Approximation ; Autonomous robots ; Belief space ; Changing environments ; Computational modeling ; Localization ; Markov processes ; Mathematical model ; mobile robots ; motion planning ; partially observable Markov decision process (POMDP) ; Planning ; Robots ; robust ; rollout ; Sampling methods ; Uncertainty</subject><ispartof>IEEE transactions on robotics, 2018-10, Vol.34 (5), p.1195-1214</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-d5a3d3b89c222c6a81fb4f92bbf35d775a832fdb4a0057b8ae473bc7abd525d73</citedby><cites>FETCH-LOGICAL-c291t-d5a3d3b89c222c6a81fb4f92bbf35d775a832fdb4a0057b8ae473bc7abd525d73</cites><orcidid>0000-0003-1598-5060 ; 0000-0001-5509-1841</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8479330$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8479330$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Agha-mohammadi, Ali-akbar</creatorcontrib><creatorcontrib>Agarwal, Saurav</creatorcontrib><creatorcontrib>Kim, Sung-Kyun</creatorcontrib><creatorcontrib>Chakravorty, Suman</creatorcontrib><creatorcontrib>Amato, Nancy M.</creatorcontrib><title>SLAP: Simultaneous Localization and Planning Under Uncertainty via Dynamic Replanning in Belief Space</title><title>IEEE transactions on robotics</title><addtitle>TRO</addtitle><description>Simultaneous localization and planning (SLAP) is a crucial ability for an autonomous robot operating under uncertainty. In its most general form, SLAP induces a continuous partially observable Markov decision process (POMDP), which needs to be repeatedly solved online. This paper addresses this problem and proposes a dynamic replanning scheme in belief space. The underlying POMDP, which is continuous in state, action, and observation space, is approximated offline via sampling-based methods, but operates in a replanning loop online to admit local improvements to the coarse offline policy. This construct enables the proposed method to combat changing environments and large localization errors, even when the change alters the homotopy class of the optimal trajectory. It further outperforms the state-of-the-art Feedback-based Information RoadMap (FIRM) method by eliminating unnecessary stabilization steps. Applying belief space planning to physical systems brings with it a plethora of challenges. A key focus of this paper is to implement the proposed planner on a physical robot and show the SLAP solution performance under uncertainty, in changing environments and in the presence of large disturbances, such as a kidnapped robot situation.</description><subject>Approximation</subject><subject>Autonomous robots</subject><subject>Belief space</subject><subject>Changing environments</subject><subject>Computational modeling</subject><subject>Localization</subject><subject>Markov processes</subject><subject>Mathematical model</subject><subject>mobile robots</subject><subject>motion planning</subject><subject>partially observable Markov decision process (POMDP)</subject><subject>Planning</subject><subject>Robots</subject><subject>robust</subject><subject>rollout</subject><subject>Sampling methods</subject><subject>Uncertainty</subject><issn>1552-3098</issn><issn>1941-0468</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kEtLAzEURoMoWKt7wU3A9dQ8Jp3EXa1PGGjpYx1uMhlJmWZqZkaov94prW7udxfnuxcOQreUjCgl6mG1mI0YoXLEJJdCjM_QgKqUJiQdy_N-F4IlnCh5ia6aZkMISxXhA-SW-WT-iJd-21UtBFd3Dc5rC5X_gdbXAUMo8LyCEHz4xOtQuNhP62ILPrR7_O0BP-8DbL3FC7f7A33AT67yrsTLHVh3jS5KqBp3c8ohWr--rKbvST57-5hO8sQyRdukEMALbqSyjDE7BklLk5aKGVNyUWSZAMlZWZgUCBGZkeDSjBubgSkE6wE-RPfHu7tYf3WuafWm7mLoX2pGaUZoKhjtKXKkbKybJrpS76LfQtxrSvRBpu5l6oNMfZLZV-6OFe-c-8dlminOCf8FxkFw3Q</recordid><startdate>201810</startdate><enddate>201810</enddate><creator>Agha-mohammadi, Ali-akbar</creator><creator>Agarwal, Saurav</creator><creator>Kim, Sung-Kyun</creator><creator>Chakravorty, Suman</creator><creator>Amato, Nancy M.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-1598-5060</orcidid><orcidid>https://orcid.org/0000-0001-5509-1841</orcidid></search><sort><creationdate>201810</creationdate><title>SLAP: Simultaneous Localization and Planning Under Uncertainty via Dynamic Replanning in Belief Space</title><author>Agha-mohammadi, Ali-akbar ; Agarwal, Saurav ; Kim, Sung-Kyun ; Chakravorty, Suman ; Amato, Nancy M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-d5a3d3b89c222c6a81fb4f92bbf35d775a832fdb4a0057b8ae473bc7abd525d73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Approximation</topic><topic>Autonomous robots</topic><topic>Belief space</topic><topic>Changing environments</topic><topic>Computational modeling</topic><topic>Localization</topic><topic>Markov processes</topic><topic>Mathematical model</topic><topic>mobile robots</topic><topic>motion planning</topic><topic>partially observable Markov decision process (POMDP)</topic><topic>Planning</topic><topic>Robots</topic><topic>robust</topic><topic>rollout</topic><topic>Sampling methods</topic><topic>Uncertainty</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Agha-mohammadi, Ali-akbar</creatorcontrib><creatorcontrib>Agarwal, Saurav</creatorcontrib><creatorcontrib>Kim, Sung-Kyun</creatorcontrib><creatorcontrib>Chakravorty, Suman</creatorcontrib><creatorcontrib>Amato, Nancy M.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on robotics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Agha-mohammadi, Ali-akbar</au><au>Agarwal, Saurav</au><au>Kim, Sung-Kyun</au><au>Chakravorty, Suman</au><au>Amato, Nancy M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>SLAP: Simultaneous Localization and Planning Under Uncertainty via Dynamic Replanning in Belief Space</atitle><jtitle>IEEE transactions on robotics</jtitle><stitle>TRO</stitle><date>2018-10</date><risdate>2018</risdate><volume>34</volume><issue>5</issue><spage>1195</spage><epage>1214</epage><pages>1195-1214</pages><issn>1552-3098</issn><eissn>1941-0468</eissn><coden>ITREAE</coden><abstract>Simultaneous localization and planning (SLAP) is a crucial ability for an autonomous robot operating under uncertainty. In its most general form, SLAP induces a continuous partially observable Markov decision process (POMDP), which needs to be repeatedly solved online. This paper addresses this problem and proposes a dynamic replanning scheme in belief space. The underlying POMDP, which is continuous in state, action, and observation space, is approximated offline via sampling-based methods, but operates in a replanning loop online to admit local improvements to the coarse offline policy. This construct enables the proposed method to combat changing environments and large localization errors, even when the change alters the homotopy class of the optimal trajectory. It further outperforms the state-of-the-art Feedback-based Information RoadMap (FIRM) method by eliminating unnecessary stabilization steps. Applying belief space planning to physical systems brings with it a plethora of challenges. A key focus of this paper is to implement the proposed planner on a physical robot and show the SLAP solution performance under uncertainty, in changing environments and in the presence of large disturbances, such as a kidnapped robot situation.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TRO.2018.2838556</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0003-1598-5060</orcidid><orcidid>https://orcid.org/0000-0001-5509-1841</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1552-3098
ispartof IEEE transactions on robotics, 2018-10, Vol.34 (5), p.1195-1214
issn 1552-3098
1941-0468
language eng
recordid cdi_proquest_journals_2117014521
source IEEE Electronic Library (IEL)
subjects Approximation
Autonomous robots
Belief space
Changing environments
Computational modeling
Localization
Markov processes
Mathematical model
mobile robots
motion planning
partially observable Markov decision process (POMDP)
Planning
Robots
robust
rollout
Sampling methods
Uncertainty
title SLAP: Simultaneous Localization and Planning Under Uncertainty via Dynamic Replanning in Belief Space
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T16%3A46%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=SLAP:%20Simultaneous%20Localization%20and%20Planning%20Under%20Uncertainty%20via%20Dynamic%20Replanning%20in%20Belief%20Space&rft.jtitle=IEEE%20transactions%20on%20robotics&rft.au=Agha-mohammadi,%20Ali-akbar&rft.date=2018-10&rft.volume=34&rft.issue=5&rft.spage=1195&rft.epage=1214&rft.pages=1195-1214&rft.issn=1552-3098&rft.eissn=1941-0468&rft.coden=ITREAE&rft_id=info:doi/10.1109/TRO.2018.2838556&rft_dat=%3Cproquest_RIE%3E2117014521%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2117014521&rft_id=info:pmid/&rft_ieee_id=8479330&rfr_iscdi=true