SLAP: Simultaneous Localization and Planning Under Uncertainty via Dynamic Replanning in Belief Space
Simultaneous localization and planning (SLAP) is a crucial ability for an autonomous robot operating under uncertainty. In its most general form, SLAP induces a continuous partially observable Markov decision process (POMDP), which needs to be repeatedly solved online. This paper addresses this prob...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on robotics 2018-10, Vol.34 (5), p.1195-1214 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1214 |
---|---|
container_issue | 5 |
container_start_page | 1195 |
container_title | IEEE transactions on robotics |
container_volume | 34 |
creator | Agha-mohammadi, Ali-akbar Agarwal, Saurav Kim, Sung-Kyun Chakravorty, Suman Amato, Nancy M. |
description | Simultaneous localization and planning (SLAP) is a crucial ability for an autonomous robot operating under uncertainty. In its most general form, SLAP induces a continuous partially observable Markov decision process (POMDP), which needs to be repeatedly solved online. This paper addresses this problem and proposes a dynamic replanning scheme in belief space. The underlying POMDP, which is continuous in state, action, and observation space, is approximated offline via sampling-based methods, but operates in a replanning loop online to admit local improvements to the coarse offline policy. This construct enables the proposed method to combat changing environments and large localization errors, even when the change alters the homotopy class of the optimal trajectory. It further outperforms the state-of-the-art Feedback-based Information RoadMap (FIRM) method by eliminating unnecessary stabilization steps. Applying belief space planning to physical systems brings with it a plethora of challenges. A key focus of this paper is to implement the proposed planner on a physical robot and show the SLAP solution performance under uncertainty, in changing environments and in the presence of large disturbances, such as a kidnapped robot situation. |
doi_str_mv | 10.1109/TRO.2018.2838556 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2117014521</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8479330</ieee_id><sourcerecordid>2117014521</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-d5a3d3b89c222c6a81fb4f92bbf35d775a832fdb4a0057b8ae473bc7abd525d73</originalsourceid><addsrcrecordid>eNo9kEtLAzEURoMoWKt7wU3A9dQ8Jp3EXa1PGGjpYx1uMhlJmWZqZkaov94prW7udxfnuxcOQreUjCgl6mG1mI0YoXLEJJdCjM_QgKqUJiQdy_N-F4IlnCh5ia6aZkMISxXhA-SW-WT-iJd-21UtBFd3Dc5rC5X_gdbXAUMo8LyCEHz4xOtQuNhP62ILPrR7_O0BP-8DbL3FC7f7A33AT67yrsTLHVh3jS5KqBp3c8ohWr--rKbvST57-5hO8sQyRdukEMALbqSyjDE7BklLk5aKGVNyUWSZAMlZWZgUCBGZkeDSjBubgSkE6wE-RPfHu7tYf3WuafWm7mLoX2pGaUZoKhjtKXKkbKybJrpS76LfQtxrSvRBpu5l6oNMfZLZV-6OFe-c-8dlminOCf8FxkFw3Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2117014521</pqid></control><display><type>article</type><title>SLAP: Simultaneous Localization and Planning Under Uncertainty via Dynamic Replanning in Belief Space</title><source>IEEE Electronic Library (IEL)</source><creator>Agha-mohammadi, Ali-akbar ; Agarwal, Saurav ; Kim, Sung-Kyun ; Chakravorty, Suman ; Amato, Nancy M.</creator><creatorcontrib>Agha-mohammadi, Ali-akbar ; Agarwal, Saurav ; Kim, Sung-Kyun ; Chakravorty, Suman ; Amato, Nancy M.</creatorcontrib><description>Simultaneous localization and planning (SLAP) is a crucial ability for an autonomous robot operating under uncertainty. In its most general form, SLAP induces a continuous partially observable Markov decision process (POMDP), which needs to be repeatedly solved online. This paper addresses this problem and proposes a dynamic replanning scheme in belief space. The underlying POMDP, which is continuous in state, action, and observation space, is approximated offline via sampling-based methods, but operates in a replanning loop online to admit local improvements to the coarse offline policy. This construct enables the proposed method to combat changing environments and large localization errors, even when the change alters the homotopy class of the optimal trajectory. It further outperforms the state-of-the-art Feedback-based Information RoadMap (FIRM) method by eliminating unnecessary stabilization steps. Applying belief space planning to physical systems brings with it a plethora of challenges. A key focus of this paper is to implement the proposed planner on a physical robot and show the SLAP solution performance under uncertainty, in changing environments and in the presence of large disturbances, such as a kidnapped robot situation.</description><identifier>ISSN: 1552-3098</identifier><identifier>EISSN: 1941-0468</identifier><identifier>DOI: 10.1109/TRO.2018.2838556</identifier><identifier>CODEN: ITREAE</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Approximation ; Autonomous robots ; Belief space ; Changing environments ; Computational modeling ; Localization ; Markov processes ; Mathematical model ; mobile robots ; motion planning ; partially observable Markov decision process (POMDP) ; Planning ; Robots ; robust ; rollout ; Sampling methods ; Uncertainty</subject><ispartof>IEEE transactions on robotics, 2018-10, Vol.34 (5), p.1195-1214</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-d5a3d3b89c222c6a81fb4f92bbf35d775a832fdb4a0057b8ae473bc7abd525d73</citedby><cites>FETCH-LOGICAL-c291t-d5a3d3b89c222c6a81fb4f92bbf35d775a832fdb4a0057b8ae473bc7abd525d73</cites><orcidid>0000-0003-1598-5060 ; 0000-0001-5509-1841</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8479330$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8479330$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Agha-mohammadi, Ali-akbar</creatorcontrib><creatorcontrib>Agarwal, Saurav</creatorcontrib><creatorcontrib>Kim, Sung-Kyun</creatorcontrib><creatorcontrib>Chakravorty, Suman</creatorcontrib><creatorcontrib>Amato, Nancy M.</creatorcontrib><title>SLAP: Simultaneous Localization and Planning Under Uncertainty via Dynamic Replanning in Belief Space</title><title>IEEE transactions on robotics</title><addtitle>TRO</addtitle><description>Simultaneous localization and planning (SLAP) is a crucial ability for an autonomous robot operating under uncertainty. In its most general form, SLAP induces a continuous partially observable Markov decision process (POMDP), which needs to be repeatedly solved online. This paper addresses this problem and proposes a dynamic replanning scheme in belief space. The underlying POMDP, which is continuous in state, action, and observation space, is approximated offline via sampling-based methods, but operates in a replanning loop online to admit local improvements to the coarse offline policy. This construct enables the proposed method to combat changing environments and large localization errors, even when the change alters the homotopy class of the optimal trajectory. It further outperforms the state-of-the-art Feedback-based Information RoadMap (FIRM) method by eliminating unnecessary stabilization steps. Applying belief space planning to physical systems brings with it a plethora of challenges. A key focus of this paper is to implement the proposed planner on a physical robot and show the SLAP solution performance under uncertainty, in changing environments and in the presence of large disturbances, such as a kidnapped robot situation.</description><subject>Approximation</subject><subject>Autonomous robots</subject><subject>Belief space</subject><subject>Changing environments</subject><subject>Computational modeling</subject><subject>Localization</subject><subject>Markov processes</subject><subject>Mathematical model</subject><subject>mobile robots</subject><subject>motion planning</subject><subject>partially observable Markov decision process (POMDP)</subject><subject>Planning</subject><subject>Robots</subject><subject>robust</subject><subject>rollout</subject><subject>Sampling methods</subject><subject>Uncertainty</subject><issn>1552-3098</issn><issn>1941-0468</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kEtLAzEURoMoWKt7wU3A9dQ8Jp3EXa1PGGjpYx1uMhlJmWZqZkaov94prW7udxfnuxcOQreUjCgl6mG1mI0YoXLEJJdCjM_QgKqUJiQdy_N-F4IlnCh5ia6aZkMISxXhA-SW-WT-iJd-21UtBFd3Dc5rC5X_gdbXAUMo8LyCEHz4xOtQuNhP62ILPrR7_O0BP-8DbL3FC7f7A33AT67yrsTLHVh3jS5KqBp3c8ohWr--rKbvST57-5hO8sQyRdukEMALbqSyjDE7BklLk5aKGVNyUWSZAMlZWZgUCBGZkeDSjBubgSkE6wE-RPfHu7tYf3WuafWm7mLoX2pGaUZoKhjtKXKkbKybJrpS76LfQtxrSvRBpu5l6oNMfZLZV-6OFe-c-8dlminOCf8FxkFw3Q</recordid><startdate>201810</startdate><enddate>201810</enddate><creator>Agha-mohammadi, Ali-akbar</creator><creator>Agarwal, Saurav</creator><creator>Kim, Sung-Kyun</creator><creator>Chakravorty, Suman</creator><creator>Amato, Nancy M.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-1598-5060</orcidid><orcidid>https://orcid.org/0000-0001-5509-1841</orcidid></search><sort><creationdate>201810</creationdate><title>SLAP: Simultaneous Localization and Planning Under Uncertainty via Dynamic Replanning in Belief Space</title><author>Agha-mohammadi, Ali-akbar ; Agarwal, Saurav ; Kim, Sung-Kyun ; Chakravorty, Suman ; Amato, Nancy M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-d5a3d3b89c222c6a81fb4f92bbf35d775a832fdb4a0057b8ae473bc7abd525d73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Approximation</topic><topic>Autonomous robots</topic><topic>Belief space</topic><topic>Changing environments</topic><topic>Computational modeling</topic><topic>Localization</topic><topic>Markov processes</topic><topic>Mathematical model</topic><topic>mobile robots</topic><topic>motion planning</topic><topic>partially observable Markov decision process (POMDP)</topic><topic>Planning</topic><topic>Robots</topic><topic>robust</topic><topic>rollout</topic><topic>Sampling methods</topic><topic>Uncertainty</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Agha-mohammadi, Ali-akbar</creatorcontrib><creatorcontrib>Agarwal, Saurav</creatorcontrib><creatorcontrib>Kim, Sung-Kyun</creatorcontrib><creatorcontrib>Chakravorty, Suman</creatorcontrib><creatorcontrib>Amato, Nancy M.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on robotics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Agha-mohammadi, Ali-akbar</au><au>Agarwal, Saurav</au><au>Kim, Sung-Kyun</au><au>Chakravorty, Suman</au><au>Amato, Nancy M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>SLAP: Simultaneous Localization and Planning Under Uncertainty via Dynamic Replanning in Belief Space</atitle><jtitle>IEEE transactions on robotics</jtitle><stitle>TRO</stitle><date>2018-10</date><risdate>2018</risdate><volume>34</volume><issue>5</issue><spage>1195</spage><epage>1214</epage><pages>1195-1214</pages><issn>1552-3098</issn><eissn>1941-0468</eissn><coden>ITREAE</coden><abstract>Simultaneous localization and planning (SLAP) is a crucial ability for an autonomous robot operating under uncertainty. In its most general form, SLAP induces a continuous partially observable Markov decision process (POMDP), which needs to be repeatedly solved online. This paper addresses this problem and proposes a dynamic replanning scheme in belief space. The underlying POMDP, which is continuous in state, action, and observation space, is approximated offline via sampling-based methods, but operates in a replanning loop online to admit local improvements to the coarse offline policy. This construct enables the proposed method to combat changing environments and large localization errors, even when the change alters the homotopy class of the optimal trajectory. It further outperforms the state-of-the-art Feedback-based Information RoadMap (FIRM) method by eliminating unnecessary stabilization steps. Applying belief space planning to physical systems brings with it a plethora of challenges. A key focus of this paper is to implement the proposed planner on a physical robot and show the SLAP solution performance under uncertainty, in changing environments and in the presence of large disturbances, such as a kidnapped robot situation.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TRO.2018.2838556</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0003-1598-5060</orcidid><orcidid>https://orcid.org/0000-0001-5509-1841</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1552-3098 |
ispartof | IEEE transactions on robotics, 2018-10, Vol.34 (5), p.1195-1214 |
issn | 1552-3098 1941-0468 |
language | eng |
recordid | cdi_proquest_journals_2117014521 |
source | IEEE Electronic Library (IEL) |
subjects | Approximation Autonomous robots Belief space Changing environments Computational modeling Localization Markov processes Mathematical model mobile robots motion planning partially observable Markov decision process (POMDP) Planning Robots robust rollout Sampling methods Uncertainty |
title | SLAP: Simultaneous Localization and Planning Under Uncertainty via Dynamic Replanning in Belief Space |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T16%3A46%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=SLAP:%20Simultaneous%20Localization%20and%20Planning%20Under%20Uncertainty%20via%20Dynamic%20Replanning%20in%20Belief%20Space&rft.jtitle=IEEE%20transactions%20on%20robotics&rft.au=Agha-mohammadi,%20Ali-akbar&rft.date=2018-10&rft.volume=34&rft.issue=5&rft.spage=1195&rft.epage=1214&rft.pages=1195-1214&rft.issn=1552-3098&rft.eissn=1941-0468&rft.coden=ITREAE&rft_id=info:doi/10.1109/TRO.2018.2838556&rft_dat=%3Cproquest_RIE%3E2117014521%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2117014521&rft_id=info:pmid/&rft_ieee_id=8479330&rfr_iscdi=true |