A facile approach for constructing nitrogen-doped carbon layers over carbon nanotube surface for oxygen reduction reaction

Fabricating nitrogen-doped carbon layers over the conductive substrate is a cost-effective and efficient approach to develop practical oxygen reduction reaction (ORR) catalyst. In the current work, relying on the commercially available carbon nanotube (CNT), nitrogen-doped carbon layers over CNT is...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of solid state electrochemistry 2018-11, Vol.22 (11), p.3467-3474
Hauptverfasser: Liu, Zong, Wang, Yuan, Feng, Ligang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3474
container_issue 11
container_start_page 3467
container_title Journal of solid state electrochemistry
container_volume 22
creator Liu, Zong
Wang, Yuan
Feng, Ligang
description Fabricating nitrogen-doped carbon layers over the conductive substrate is a cost-effective and efficient approach to develop practical oxygen reduction reaction (ORR) catalyst. In the current work, relying on the commercially available carbon nanotube (CNT), nitrogen-doped carbon layers over CNT is constructed by annealing the in situ formed complex over the CNT surface derived from iron ion inducing diaminonaphthalene (DAN) polymerization and DAN self-polymerization. Physical and electrochemical characterizations are carefully conducted to comparatively analyze the structure and activity relationship. The significance of iron in constructing nitrogen-doped carbon layers and tuning active sites of N types over multiwall carbon nanotube for ORR is demonstrated by X-ray photoelectron spectroscopy and Raman scattering spectrum. The excellent performance of nitrogen-doped carbon layers over CNT (catalyzed by iron) towards ORR is displayed by rotating ring-disk electrode. Specifically, the onset potential, half-wave potential, and limiting current density are 0.961 V, 0.831 V, and 5.20 mA cm −2 respectively, very close to the state-of-the-art commercial Pt/C catalyst. Both high surface area and efficient N active sites should be considered in the nitrogen-doped carbon materials design and fabrication for ORR. Considering the large-scale availability, it has significant value in fuel cells commercial applications.
doi_str_mv 10.1007/s10008-018-4061-5
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2116912714</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2116912714</sourcerecordid><originalsourceid>FETCH-LOGICAL-c353t-785adef5738be77f3907ca77f41dc53be793771105826d6b368137d6cf583cd53</originalsourceid><addsrcrecordid>eNp1kE9PwyAYh4nRxDn9AN5IPKO8pRR2XBb_JUu86JlQoLPLhAqtcX566arx5AV-efP-HsKD0CXQa6BU3KR8UkkoSFLSCgg_QjMoGSNUVPL4kAsiSylP0VlKW0pBVEBn6GuJG23ancO662LQ5hU3IWITfOrjYPrWb7Bv-xg2zhMbOmex0bEOHu_03sWEw4eLvyOvfeiH2uE0xEx1B1T43Ocujs6OuDAmfQjn6KTRu-Qufu45erm7fV49kPXT_eNquSaGcdYTIbm2ruGCydoJ0bAFFUbnUII1nOXZggkBQLksKlvVrJLAhK1MwyUzlrM5upq4-X_vg0u92oYh-vykKgCqBRQi25kjmLZMDClF16gutm867hVQNSpWk2KVFatRsRrJxdRJeddvXPwj_1_6BtpQgE4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2116912714</pqid></control><display><type>article</type><title>A facile approach for constructing nitrogen-doped carbon layers over carbon nanotube surface for oxygen reduction reaction</title><source>Springer Nature - Complete Springer Journals</source><creator>Liu, Zong ; Wang, Yuan ; Feng, Ligang</creator><creatorcontrib>Liu, Zong ; Wang, Yuan ; Feng, Ligang</creatorcontrib><description>Fabricating nitrogen-doped carbon layers over the conductive substrate is a cost-effective and efficient approach to develop practical oxygen reduction reaction (ORR) catalyst. In the current work, relying on the commercially available carbon nanotube (CNT), nitrogen-doped carbon layers over CNT is constructed by annealing the in situ formed complex over the CNT surface derived from iron ion inducing diaminonaphthalene (DAN) polymerization and DAN self-polymerization. Physical and electrochemical characterizations are carefully conducted to comparatively analyze the structure and activity relationship. The significance of iron in constructing nitrogen-doped carbon layers and tuning active sites of N types over multiwall carbon nanotube for ORR is demonstrated by X-ray photoelectron spectroscopy and Raman scattering spectrum. The excellent performance of nitrogen-doped carbon layers over CNT (catalyzed by iron) towards ORR is displayed by rotating ring-disk electrode. Specifically, the onset potential, half-wave potential, and limiting current density are 0.961 V, 0.831 V, and 5.20 mA cm −2 respectively, very close to the state-of-the-art commercial Pt/C catalyst. Both high surface area and efficient N active sites should be considered in the nitrogen-doped carbon materials design and fabrication for ORR. Considering the large-scale availability, it has significant value in fuel cells commercial applications.</description><identifier>ISSN: 1432-8488</identifier><identifier>EISSN: 1433-0768</identifier><identifier>DOI: 10.1007/s10008-018-4061-5</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Analytical Chemistry ; Carbon ; Catalysis ; Catalysts ; Characterization and Evaluation of Materials ; Chemistry ; Chemistry and Materials Science ; Condensed Matter Physics ; Electrochemistry ; Energy Storage ; Fuel cells ; Iron ; Multi wall carbon nanotubes ; Nanotubes ; Nitrogen ; Original Paper ; Oxygen reduction reactions ; Physical Chemistry ; Polymerization ; Raman spectra ; Rotating disks ; Substrates</subject><ispartof>Journal of solid state electrochemistry, 2018-11, Vol.22 (11), p.3467-3474</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2018</rights><rights>Copyright Springer Science &amp; Business Media 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c353t-785adef5738be77f3907ca77f41dc53be793771105826d6b368137d6cf583cd53</citedby><cites>FETCH-LOGICAL-c353t-785adef5738be77f3907ca77f41dc53be793771105826d6b368137d6cf583cd53</cites><orcidid>0000-0001-9879-0773</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10008-018-4061-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10008-018-4061-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Liu, Zong</creatorcontrib><creatorcontrib>Wang, Yuan</creatorcontrib><creatorcontrib>Feng, Ligang</creatorcontrib><title>A facile approach for constructing nitrogen-doped carbon layers over carbon nanotube surface for oxygen reduction reaction</title><title>Journal of solid state electrochemistry</title><addtitle>J Solid State Electrochem</addtitle><description>Fabricating nitrogen-doped carbon layers over the conductive substrate is a cost-effective and efficient approach to develop practical oxygen reduction reaction (ORR) catalyst. In the current work, relying on the commercially available carbon nanotube (CNT), nitrogen-doped carbon layers over CNT is constructed by annealing the in situ formed complex over the CNT surface derived from iron ion inducing diaminonaphthalene (DAN) polymerization and DAN self-polymerization. Physical and electrochemical characterizations are carefully conducted to comparatively analyze the structure and activity relationship. The significance of iron in constructing nitrogen-doped carbon layers and tuning active sites of N types over multiwall carbon nanotube for ORR is demonstrated by X-ray photoelectron spectroscopy and Raman scattering spectrum. The excellent performance of nitrogen-doped carbon layers over CNT (catalyzed by iron) towards ORR is displayed by rotating ring-disk electrode. Specifically, the onset potential, half-wave potential, and limiting current density are 0.961 V, 0.831 V, and 5.20 mA cm −2 respectively, very close to the state-of-the-art commercial Pt/C catalyst. Both high surface area and efficient N active sites should be considered in the nitrogen-doped carbon materials design and fabrication for ORR. Considering the large-scale availability, it has significant value in fuel cells commercial applications.</description><subject>Analytical Chemistry</subject><subject>Carbon</subject><subject>Catalysis</subject><subject>Catalysts</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Condensed Matter Physics</subject><subject>Electrochemistry</subject><subject>Energy Storage</subject><subject>Fuel cells</subject><subject>Iron</subject><subject>Multi wall carbon nanotubes</subject><subject>Nanotubes</subject><subject>Nitrogen</subject><subject>Original Paper</subject><subject>Oxygen reduction reactions</subject><subject>Physical Chemistry</subject><subject>Polymerization</subject><subject>Raman spectra</subject><subject>Rotating disks</subject><subject>Substrates</subject><issn>1432-8488</issn><issn>1433-0768</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kE9PwyAYh4nRxDn9AN5IPKO8pRR2XBb_JUu86JlQoLPLhAqtcX566arx5AV-efP-HsKD0CXQa6BU3KR8UkkoSFLSCgg_QjMoGSNUVPL4kAsiSylP0VlKW0pBVEBn6GuJG23ancO662LQ5hU3IWITfOrjYPrWb7Bv-xg2zhMbOmex0bEOHu_03sWEw4eLvyOvfeiH2uE0xEx1B1T43Ocujs6OuDAmfQjn6KTRu-Qufu45erm7fV49kPXT_eNquSaGcdYTIbm2ruGCydoJ0bAFFUbnUII1nOXZggkBQLksKlvVrJLAhK1MwyUzlrM5upq4-X_vg0u92oYh-vykKgCqBRQi25kjmLZMDClF16gutm867hVQNSpWk2KVFatRsRrJxdRJeddvXPwj_1_6BtpQgE4</recordid><startdate>20181101</startdate><enddate>20181101</enddate><creator>Liu, Zong</creator><creator>Wang, Yuan</creator><creator>Feng, Ligang</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-9879-0773</orcidid></search><sort><creationdate>20181101</creationdate><title>A facile approach for constructing nitrogen-doped carbon layers over carbon nanotube surface for oxygen reduction reaction</title><author>Liu, Zong ; Wang, Yuan ; Feng, Ligang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c353t-785adef5738be77f3907ca77f41dc53be793771105826d6b368137d6cf583cd53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Analytical Chemistry</topic><topic>Carbon</topic><topic>Catalysis</topic><topic>Catalysts</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Condensed Matter Physics</topic><topic>Electrochemistry</topic><topic>Energy Storage</topic><topic>Fuel cells</topic><topic>Iron</topic><topic>Multi wall carbon nanotubes</topic><topic>Nanotubes</topic><topic>Nitrogen</topic><topic>Original Paper</topic><topic>Oxygen reduction reactions</topic><topic>Physical Chemistry</topic><topic>Polymerization</topic><topic>Raman spectra</topic><topic>Rotating disks</topic><topic>Substrates</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Zong</creatorcontrib><creatorcontrib>Wang, Yuan</creatorcontrib><creatorcontrib>Feng, Ligang</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of solid state electrochemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Zong</au><au>Wang, Yuan</au><au>Feng, Ligang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A facile approach for constructing nitrogen-doped carbon layers over carbon nanotube surface for oxygen reduction reaction</atitle><jtitle>Journal of solid state electrochemistry</jtitle><stitle>J Solid State Electrochem</stitle><date>2018-11-01</date><risdate>2018</risdate><volume>22</volume><issue>11</issue><spage>3467</spage><epage>3474</epage><pages>3467-3474</pages><issn>1432-8488</issn><eissn>1433-0768</eissn><abstract>Fabricating nitrogen-doped carbon layers over the conductive substrate is a cost-effective and efficient approach to develop practical oxygen reduction reaction (ORR) catalyst. In the current work, relying on the commercially available carbon nanotube (CNT), nitrogen-doped carbon layers over CNT is constructed by annealing the in situ formed complex over the CNT surface derived from iron ion inducing diaminonaphthalene (DAN) polymerization and DAN self-polymerization. Physical and electrochemical characterizations are carefully conducted to comparatively analyze the structure and activity relationship. The significance of iron in constructing nitrogen-doped carbon layers and tuning active sites of N types over multiwall carbon nanotube for ORR is demonstrated by X-ray photoelectron spectroscopy and Raman scattering spectrum. The excellent performance of nitrogen-doped carbon layers over CNT (catalyzed by iron) towards ORR is displayed by rotating ring-disk electrode. Specifically, the onset potential, half-wave potential, and limiting current density are 0.961 V, 0.831 V, and 5.20 mA cm −2 respectively, very close to the state-of-the-art commercial Pt/C catalyst. Both high surface area and efficient N active sites should be considered in the nitrogen-doped carbon materials design and fabrication for ORR. Considering the large-scale availability, it has significant value in fuel cells commercial applications.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s10008-018-4061-5</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-9879-0773</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1432-8488
ispartof Journal of solid state electrochemistry, 2018-11, Vol.22 (11), p.3467-3474
issn 1432-8488
1433-0768
language eng
recordid cdi_proquest_journals_2116912714
source Springer Nature - Complete Springer Journals
subjects Analytical Chemistry
Carbon
Catalysis
Catalysts
Characterization and Evaluation of Materials
Chemistry
Chemistry and Materials Science
Condensed Matter Physics
Electrochemistry
Energy Storage
Fuel cells
Iron
Multi wall carbon nanotubes
Nanotubes
Nitrogen
Original Paper
Oxygen reduction reactions
Physical Chemistry
Polymerization
Raman spectra
Rotating disks
Substrates
title A facile approach for constructing nitrogen-doped carbon layers over carbon nanotube surface for oxygen reduction reaction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T09%3A02%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20facile%20approach%20for%20constructing%20nitrogen-doped%20carbon%20layers%20over%20carbon%20nanotube%20surface%20for%20oxygen%20reduction%20reaction&rft.jtitle=Journal%20of%20solid%20state%20electrochemistry&rft.au=Liu,%20Zong&rft.date=2018-11-01&rft.volume=22&rft.issue=11&rft.spage=3467&rft.epage=3474&rft.pages=3467-3474&rft.issn=1432-8488&rft.eissn=1433-0768&rft_id=info:doi/10.1007/s10008-018-4061-5&rft_dat=%3Cproquest_cross%3E2116912714%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2116912714&rft_id=info:pmid/&rfr_iscdi=true