A facile approach for constructing nitrogen-doped carbon layers over carbon nanotube surface for oxygen reduction reaction
Fabricating nitrogen-doped carbon layers over the conductive substrate is a cost-effective and efficient approach to develop practical oxygen reduction reaction (ORR) catalyst. In the current work, relying on the commercially available carbon nanotube (CNT), nitrogen-doped carbon layers over CNT is...
Gespeichert in:
Veröffentlicht in: | Journal of solid state electrochemistry 2018-11, Vol.22 (11), p.3467-3474 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3474 |
---|---|
container_issue | 11 |
container_start_page | 3467 |
container_title | Journal of solid state electrochemistry |
container_volume | 22 |
creator | Liu, Zong Wang, Yuan Feng, Ligang |
description | Fabricating nitrogen-doped carbon layers over the conductive substrate is a cost-effective and efficient approach to develop practical oxygen reduction reaction (ORR) catalyst. In the current work, relying on the commercially available carbon nanotube (CNT), nitrogen-doped carbon layers over CNT is constructed by annealing the in situ formed complex over the CNT surface derived from iron ion inducing diaminonaphthalene (DAN) polymerization and DAN self-polymerization. Physical and electrochemical characterizations are carefully conducted to comparatively analyze the structure and activity relationship. The significance of iron in constructing nitrogen-doped carbon layers and tuning active sites of N types over multiwall carbon nanotube for ORR is demonstrated by X-ray photoelectron spectroscopy and Raman scattering spectrum. The excellent performance of nitrogen-doped carbon layers over CNT (catalyzed by iron) towards ORR is displayed by rotating ring-disk electrode. Specifically, the onset potential, half-wave potential, and limiting current density are 0.961 V, 0.831 V, and 5.20 mA cm
−2
respectively, very close to the state-of-the-art commercial Pt/C catalyst. Both high surface area and efficient N active sites should be considered in the nitrogen-doped carbon materials design and fabrication for ORR. Considering the large-scale availability, it has significant value in fuel cells commercial applications. |
doi_str_mv | 10.1007/s10008-018-4061-5 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2116912714</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2116912714</sourcerecordid><originalsourceid>FETCH-LOGICAL-c353t-785adef5738be77f3907ca77f41dc53be793771105826d6b368137d6cf583cd53</originalsourceid><addsrcrecordid>eNp1kE9PwyAYh4nRxDn9AN5IPKO8pRR2XBb_JUu86JlQoLPLhAqtcX566arx5AV-efP-HsKD0CXQa6BU3KR8UkkoSFLSCgg_QjMoGSNUVPL4kAsiSylP0VlKW0pBVEBn6GuJG23ancO662LQ5hU3IWITfOrjYPrWb7Bv-xg2zhMbOmex0bEOHu_03sWEw4eLvyOvfeiH2uE0xEx1B1T43Ocujs6OuDAmfQjn6KTRu-Qufu45erm7fV49kPXT_eNquSaGcdYTIbm2ruGCydoJ0bAFFUbnUII1nOXZggkBQLksKlvVrJLAhK1MwyUzlrM5upq4-X_vg0u92oYh-vykKgCqBRQi25kjmLZMDClF16gutm867hVQNSpWk2KVFatRsRrJxdRJeddvXPwj_1_6BtpQgE4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2116912714</pqid></control><display><type>article</type><title>A facile approach for constructing nitrogen-doped carbon layers over carbon nanotube surface for oxygen reduction reaction</title><source>Springer Nature - Complete Springer Journals</source><creator>Liu, Zong ; Wang, Yuan ; Feng, Ligang</creator><creatorcontrib>Liu, Zong ; Wang, Yuan ; Feng, Ligang</creatorcontrib><description>Fabricating nitrogen-doped carbon layers over the conductive substrate is a cost-effective and efficient approach to develop practical oxygen reduction reaction (ORR) catalyst. In the current work, relying on the commercially available carbon nanotube (CNT), nitrogen-doped carbon layers over CNT is constructed by annealing the in situ formed complex over the CNT surface derived from iron ion inducing diaminonaphthalene (DAN) polymerization and DAN self-polymerization. Physical and electrochemical characterizations are carefully conducted to comparatively analyze the structure and activity relationship. The significance of iron in constructing nitrogen-doped carbon layers and tuning active sites of N types over multiwall carbon nanotube for ORR is demonstrated by X-ray photoelectron spectroscopy and Raman scattering spectrum. The excellent performance of nitrogen-doped carbon layers over CNT (catalyzed by iron) towards ORR is displayed by rotating ring-disk electrode. Specifically, the onset potential, half-wave potential, and limiting current density are 0.961 V, 0.831 V, and 5.20 mA cm
−2
respectively, very close to the state-of-the-art commercial Pt/C catalyst. Both high surface area and efficient N active sites should be considered in the nitrogen-doped carbon materials design and fabrication for ORR. Considering the large-scale availability, it has significant value in fuel cells commercial applications.</description><identifier>ISSN: 1432-8488</identifier><identifier>EISSN: 1433-0768</identifier><identifier>DOI: 10.1007/s10008-018-4061-5</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Analytical Chemistry ; Carbon ; Catalysis ; Catalysts ; Characterization and Evaluation of Materials ; Chemistry ; Chemistry and Materials Science ; Condensed Matter Physics ; Electrochemistry ; Energy Storage ; Fuel cells ; Iron ; Multi wall carbon nanotubes ; Nanotubes ; Nitrogen ; Original Paper ; Oxygen reduction reactions ; Physical Chemistry ; Polymerization ; Raman spectra ; Rotating disks ; Substrates</subject><ispartof>Journal of solid state electrochemistry, 2018-11, Vol.22 (11), p.3467-3474</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2018</rights><rights>Copyright Springer Science & Business Media 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c353t-785adef5738be77f3907ca77f41dc53be793771105826d6b368137d6cf583cd53</citedby><cites>FETCH-LOGICAL-c353t-785adef5738be77f3907ca77f41dc53be793771105826d6b368137d6cf583cd53</cites><orcidid>0000-0001-9879-0773</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10008-018-4061-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10008-018-4061-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Liu, Zong</creatorcontrib><creatorcontrib>Wang, Yuan</creatorcontrib><creatorcontrib>Feng, Ligang</creatorcontrib><title>A facile approach for constructing nitrogen-doped carbon layers over carbon nanotube surface for oxygen reduction reaction</title><title>Journal of solid state electrochemistry</title><addtitle>J Solid State Electrochem</addtitle><description>Fabricating nitrogen-doped carbon layers over the conductive substrate is a cost-effective and efficient approach to develop practical oxygen reduction reaction (ORR) catalyst. In the current work, relying on the commercially available carbon nanotube (CNT), nitrogen-doped carbon layers over CNT is constructed by annealing the in situ formed complex over the CNT surface derived from iron ion inducing diaminonaphthalene (DAN) polymerization and DAN self-polymerization. Physical and electrochemical characterizations are carefully conducted to comparatively analyze the structure and activity relationship. The significance of iron in constructing nitrogen-doped carbon layers and tuning active sites of N types over multiwall carbon nanotube for ORR is demonstrated by X-ray photoelectron spectroscopy and Raman scattering spectrum. The excellent performance of nitrogen-doped carbon layers over CNT (catalyzed by iron) towards ORR is displayed by rotating ring-disk electrode. Specifically, the onset potential, half-wave potential, and limiting current density are 0.961 V, 0.831 V, and 5.20 mA cm
−2
respectively, very close to the state-of-the-art commercial Pt/C catalyst. Both high surface area and efficient N active sites should be considered in the nitrogen-doped carbon materials design and fabrication for ORR. Considering the large-scale availability, it has significant value in fuel cells commercial applications.</description><subject>Analytical Chemistry</subject><subject>Carbon</subject><subject>Catalysis</subject><subject>Catalysts</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Condensed Matter Physics</subject><subject>Electrochemistry</subject><subject>Energy Storage</subject><subject>Fuel cells</subject><subject>Iron</subject><subject>Multi wall carbon nanotubes</subject><subject>Nanotubes</subject><subject>Nitrogen</subject><subject>Original Paper</subject><subject>Oxygen reduction reactions</subject><subject>Physical Chemistry</subject><subject>Polymerization</subject><subject>Raman spectra</subject><subject>Rotating disks</subject><subject>Substrates</subject><issn>1432-8488</issn><issn>1433-0768</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kE9PwyAYh4nRxDn9AN5IPKO8pRR2XBb_JUu86JlQoLPLhAqtcX566arx5AV-efP-HsKD0CXQa6BU3KR8UkkoSFLSCgg_QjMoGSNUVPL4kAsiSylP0VlKW0pBVEBn6GuJG23ancO662LQ5hU3IWITfOrjYPrWb7Bv-xg2zhMbOmex0bEOHu_03sWEw4eLvyOvfeiH2uE0xEx1B1T43Ocujs6OuDAmfQjn6KTRu-Qufu45erm7fV49kPXT_eNquSaGcdYTIbm2ruGCydoJ0bAFFUbnUII1nOXZggkBQLksKlvVrJLAhK1MwyUzlrM5upq4-X_vg0u92oYh-vykKgCqBRQi25kjmLZMDClF16gutm867hVQNSpWk2KVFatRsRrJxdRJeddvXPwj_1_6BtpQgE4</recordid><startdate>20181101</startdate><enddate>20181101</enddate><creator>Liu, Zong</creator><creator>Wang, Yuan</creator><creator>Feng, Ligang</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-9879-0773</orcidid></search><sort><creationdate>20181101</creationdate><title>A facile approach for constructing nitrogen-doped carbon layers over carbon nanotube surface for oxygen reduction reaction</title><author>Liu, Zong ; Wang, Yuan ; Feng, Ligang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c353t-785adef5738be77f3907ca77f41dc53be793771105826d6b368137d6cf583cd53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Analytical Chemistry</topic><topic>Carbon</topic><topic>Catalysis</topic><topic>Catalysts</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Condensed Matter Physics</topic><topic>Electrochemistry</topic><topic>Energy Storage</topic><topic>Fuel cells</topic><topic>Iron</topic><topic>Multi wall carbon nanotubes</topic><topic>Nanotubes</topic><topic>Nitrogen</topic><topic>Original Paper</topic><topic>Oxygen reduction reactions</topic><topic>Physical Chemistry</topic><topic>Polymerization</topic><topic>Raman spectra</topic><topic>Rotating disks</topic><topic>Substrates</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Zong</creatorcontrib><creatorcontrib>Wang, Yuan</creatorcontrib><creatorcontrib>Feng, Ligang</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of solid state electrochemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Zong</au><au>Wang, Yuan</au><au>Feng, Ligang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A facile approach for constructing nitrogen-doped carbon layers over carbon nanotube surface for oxygen reduction reaction</atitle><jtitle>Journal of solid state electrochemistry</jtitle><stitle>J Solid State Electrochem</stitle><date>2018-11-01</date><risdate>2018</risdate><volume>22</volume><issue>11</issue><spage>3467</spage><epage>3474</epage><pages>3467-3474</pages><issn>1432-8488</issn><eissn>1433-0768</eissn><abstract>Fabricating nitrogen-doped carbon layers over the conductive substrate is a cost-effective and efficient approach to develop practical oxygen reduction reaction (ORR) catalyst. In the current work, relying on the commercially available carbon nanotube (CNT), nitrogen-doped carbon layers over CNT is constructed by annealing the in situ formed complex over the CNT surface derived from iron ion inducing diaminonaphthalene (DAN) polymerization and DAN self-polymerization. Physical and electrochemical characterizations are carefully conducted to comparatively analyze the structure and activity relationship. The significance of iron in constructing nitrogen-doped carbon layers and tuning active sites of N types over multiwall carbon nanotube for ORR is demonstrated by X-ray photoelectron spectroscopy and Raman scattering spectrum. The excellent performance of nitrogen-doped carbon layers over CNT (catalyzed by iron) towards ORR is displayed by rotating ring-disk electrode. Specifically, the onset potential, half-wave potential, and limiting current density are 0.961 V, 0.831 V, and 5.20 mA cm
−2
respectively, very close to the state-of-the-art commercial Pt/C catalyst. Both high surface area and efficient N active sites should be considered in the nitrogen-doped carbon materials design and fabrication for ORR. Considering the large-scale availability, it has significant value in fuel cells commercial applications.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s10008-018-4061-5</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-9879-0773</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1432-8488 |
ispartof | Journal of solid state electrochemistry, 2018-11, Vol.22 (11), p.3467-3474 |
issn | 1432-8488 1433-0768 |
language | eng |
recordid | cdi_proquest_journals_2116912714 |
source | Springer Nature - Complete Springer Journals |
subjects | Analytical Chemistry Carbon Catalysis Catalysts Characterization and Evaluation of Materials Chemistry Chemistry and Materials Science Condensed Matter Physics Electrochemistry Energy Storage Fuel cells Iron Multi wall carbon nanotubes Nanotubes Nitrogen Original Paper Oxygen reduction reactions Physical Chemistry Polymerization Raman spectra Rotating disks Substrates |
title | A facile approach for constructing nitrogen-doped carbon layers over carbon nanotube surface for oxygen reduction reaction |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T09%3A02%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20facile%20approach%20for%20constructing%20nitrogen-doped%20carbon%20layers%20over%20carbon%20nanotube%20surface%20for%20oxygen%20reduction%20reaction&rft.jtitle=Journal%20of%20solid%20state%20electrochemistry&rft.au=Liu,%20Zong&rft.date=2018-11-01&rft.volume=22&rft.issue=11&rft.spage=3467&rft.epage=3474&rft.pages=3467-3474&rft.issn=1432-8488&rft.eissn=1433-0768&rft_id=info:doi/10.1007/s10008-018-4061-5&rft_dat=%3Cproquest_cross%3E2116912714%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2116912714&rft_id=info:pmid/&rfr_iscdi=true |