Second nearest-neighbor modified embedded-atom method interatomic potentials for the Pd-M (M = Al, Co, Cu, Fe, Mo, Ni, Ti) binary systems
Palladium (Pd) has attracted attention as one of the major components of noble metal catalysts due to its excellent reactivity to a wide range of catalytic reactions. It is important to predict and control the atomic arrangement in catalysts because their properties are known to be affected by it. T...
Gespeichert in:
Veröffentlicht in: | Calphad 2018-09, Vol.62, p.172-186 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 186 |
---|---|
container_issue | |
container_start_page | 172 |
container_title | Calphad |
container_volume | 62 |
creator | Jeong, Ga-Un Park, Chang Seo Do, Hyeon-Seok Park, Seul-Mi Lee, Byeong-Joo |
description | Palladium (Pd) has attracted attention as one of the major components of noble metal catalysts due to its excellent reactivity to a wide range of catalytic reactions. It is important to predict and control the atomic arrangement in catalysts because their properties are known to be affected by it. Therefore, to enable atomistic simulations for investigating the atomic scale structural evolution, we have developed interatomic potentials for Pd-M (M = Al, Co, Cu, Fe, Mo, Ni, Ti) binary systems based on the second nearest-neighbor modified embedded-atom method formalism. These potentials reproduce various fundamental properties of the alloys (the structural, elastic and thermodynamic properties of compound and solution phases, and order-disorder transition temperature) in reasonable agreements with experimental data, first-principles calculations and CALPHAD assessments. Herein, we propose that these potentials can be applied to the design of robust bimetallic catalysts by predicting the shape and atomic arrangement of Pd bimetallic nanoparticles.
•2NN MEAM potentials for Pd-M (M = Al, Co, Cu, Fe, Mo, Ni, Ti) binary systems are developed.•The potentials can describe various fundamental material properties of the relevant Pd alloys.•The potentials can be utilized to find the optimum process condition (size, composition of particles and process temperature) to obtain Pd bimetallic nanoparticles that yield the best catalytic performance, by predicting the shape and atomic configuration in Pd bimetallic nanoparticles. |
doi_str_mv | 10.1016/j.calphad.2018.06.006 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2116841523</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0364591618300828</els_id><sourcerecordid>2116841523</sourcerecordid><originalsourceid>FETCH-LOGICAL-c337t-376b65d78e8faee4007705aab12c5f87ab78e5b5db8fce0e849a1f2f2415e623</originalsourceid><addsrcrecordid>eNqFUMFqGzEUFCWBOE4-oSDopQHvRlrtauVDCcHUbcFOAvFdaKWnWsa7ciU54Ft-oN_Sf-qXRMa55zBIPM3M0wxCnykpKaH8dlNqtd2tlSkrQkVJeEkI_4RGVLSsqKaiPkMjwnhdNFPKL9BljBtCSMtYPUJ_n0H7weABVICYigHc73XnA-69cdaBwdB3YAyYQiXf4x7S2hvshgThOHAa73yCITm1jdhmYVoDfjLFEn9d_n_99y3jfjvBM5-xn-A5TPAy3x_cBK_cDe7coMIBx0NM0McrdG6zD1y_n2O0mn9fzX4Wi8cfv2b3i0Iz1qaCtbzjjWkFCKsA6hymJY1SHa10Y0WruvzUdI3phNVAQNRTRW1lq5o2wCs2Rl9Otrvg_-xzbLnx-zDkjbKilItMq1hmNSeWDj7GAFbuguvzbyUl8li83Mj34uWxeEm4zMVn3d1JBznBi4Mgo3YwaDAugE7SePeBwxuxapAU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2116841523</pqid></control><display><type>article</type><title>Second nearest-neighbor modified embedded-atom method interatomic potentials for the Pd-M (M = Al, Co, Cu, Fe, Mo, Ni, Ti) binary systems</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Jeong, Ga-Un ; Park, Chang Seo ; Do, Hyeon-Seok ; Park, Seul-Mi ; Lee, Byeong-Joo</creator><creatorcontrib>Jeong, Ga-Un ; Park, Chang Seo ; Do, Hyeon-Seok ; Park, Seul-Mi ; Lee, Byeong-Joo</creatorcontrib><description>Palladium (Pd) has attracted attention as one of the major components of noble metal catalysts due to its excellent reactivity to a wide range of catalytic reactions. It is important to predict and control the atomic arrangement in catalysts because their properties are known to be affected by it. Therefore, to enable atomistic simulations for investigating the atomic scale structural evolution, we have developed interatomic potentials for Pd-M (M = Al, Co, Cu, Fe, Mo, Ni, Ti) binary systems based on the second nearest-neighbor modified embedded-atom method formalism. These potentials reproduce various fundamental properties of the alloys (the structural, elastic and thermodynamic properties of compound and solution phases, and order-disorder transition temperature) in reasonable agreements with experimental data, first-principles calculations and CALPHAD assessments. Herein, we propose that these potentials can be applied to the design of robust bimetallic catalysts by predicting the shape and atomic arrangement of Pd bimetallic nanoparticles.
•2NN MEAM potentials for Pd-M (M = Al, Co, Cu, Fe, Mo, Ni, Ti) binary systems are developed.•The potentials can describe various fundamental material properties of the relevant Pd alloys.•The potentials can be utilized to find the optimum process condition (size, composition of particles and process temperature) to obtain Pd bimetallic nanoparticles that yield the best catalytic performance, by predicting the shape and atomic configuration in Pd bimetallic nanoparticles.</description><identifier>ISSN: 0364-5916</identifier><identifier>EISSN: 1873-2984</identifier><identifier>DOI: 10.1016/j.calphad.2018.06.006</identifier><language>eng</language><publisher>Elmsford: Elsevier Ltd</publisher><subject>Aluminum ; Atoms & subatomic particles ; Bimetals ; Binary systems ; Catalysis ; Catalyst ; Catalysts ; Cobalt ; Computer simulation ; Copper ; Elastic properties ; Embedded atom method ; Embedded systems ; First principles ; Interatomic potential ; Iron ; Metals ; Molybdenum ; Nanoparticles ; Nickel ; Noble metals ; Order-disorder transformations ; Palladium ; Pd alloys ; Second nearest-neighbor modified embedded-atom method ; Thermodynamic properties ; Thermodynamics ; Titanium ; Transition temperature</subject><ispartof>Calphad, 2018-09, Vol.62, p.172-186</ispartof><rights>2018 Elsevier Ltd</rights><rights>Copyright Elsevier BV Sep 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c337t-376b65d78e8faee4007705aab12c5f87ab78e5b5db8fce0e849a1f2f2415e623</citedby><cites>FETCH-LOGICAL-c337t-376b65d78e8faee4007705aab12c5f87ab78e5b5db8fce0e849a1f2f2415e623</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.calphad.2018.06.006$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3548,27923,27924,45994</link.rule.ids></links><search><creatorcontrib>Jeong, Ga-Un</creatorcontrib><creatorcontrib>Park, Chang Seo</creatorcontrib><creatorcontrib>Do, Hyeon-Seok</creatorcontrib><creatorcontrib>Park, Seul-Mi</creatorcontrib><creatorcontrib>Lee, Byeong-Joo</creatorcontrib><title>Second nearest-neighbor modified embedded-atom method interatomic potentials for the Pd-M (M = Al, Co, Cu, Fe, Mo, Ni, Ti) binary systems</title><title>Calphad</title><description>Palladium (Pd) has attracted attention as one of the major components of noble metal catalysts due to its excellent reactivity to a wide range of catalytic reactions. It is important to predict and control the atomic arrangement in catalysts because their properties are known to be affected by it. Therefore, to enable atomistic simulations for investigating the atomic scale structural evolution, we have developed interatomic potentials for Pd-M (M = Al, Co, Cu, Fe, Mo, Ni, Ti) binary systems based on the second nearest-neighbor modified embedded-atom method formalism. These potentials reproduce various fundamental properties of the alloys (the structural, elastic and thermodynamic properties of compound and solution phases, and order-disorder transition temperature) in reasonable agreements with experimental data, first-principles calculations and CALPHAD assessments. Herein, we propose that these potentials can be applied to the design of robust bimetallic catalysts by predicting the shape and atomic arrangement of Pd bimetallic nanoparticles.
•2NN MEAM potentials for Pd-M (M = Al, Co, Cu, Fe, Mo, Ni, Ti) binary systems are developed.•The potentials can describe various fundamental material properties of the relevant Pd alloys.•The potentials can be utilized to find the optimum process condition (size, composition of particles and process temperature) to obtain Pd bimetallic nanoparticles that yield the best catalytic performance, by predicting the shape and atomic configuration in Pd bimetallic nanoparticles.</description><subject>Aluminum</subject><subject>Atoms & subatomic particles</subject><subject>Bimetals</subject><subject>Binary systems</subject><subject>Catalysis</subject><subject>Catalyst</subject><subject>Catalysts</subject><subject>Cobalt</subject><subject>Computer simulation</subject><subject>Copper</subject><subject>Elastic properties</subject><subject>Embedded atom method</subject><subject>Embedded systems</subject><subject>First principles</subject><subject>Interatomic potential</subject><subject>Iron</subject><subject>Metals</subject><subject>Molybdenum</subject><subject>Nanoparticles</subject><subject>Nickel</subject><subject>Noble metals</subject><subject>Order-disorder transformations</subject><subject>Palladium</subject><subject>Pd alloys</subject><subject>Second nearest-neighbor modified embedded-atom method</subject><subject>Thermodynamic properties</subject><subject>Thermodynamics</subject><subject>Titanium</subject><subject>Transition temperature</subject><issn>0364-5916</issn><issn>1873-2984</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqFUMFqGzEUFCWBOE4-oSDopQHvRlrtauVDCcHUbcFOAvFdaKWnWsa7ciU54Ft-oN_Sf-qXRMa55zBIPM3M0wxCnykpKaH8dlNqtd2tlSkrQkVJeEkI_4RGVLSsqKaiPkMjwnhdNFPKL9BljBtCSMtYPUJ_n0H7weABVICYigHc73XnA-69cdaBwdB3YAyYQiXf4x7S2hvshgThOHAa73yCITm1jdhmYVoDfjLFEn9d_n_99y3jfjvBM5-xn-A5TPAy3x_cBK_cDe7coMIBx0NM0McrdG6zD1y_n2O0mn9fzX4Wi8cfv2b3i0Iz1qaCtbzjjWkFCKsA6hymJY1SHa10Y0WruvzUdI3phNVAQNRTRW1lq5o2wCs2Rl9Otrvg_-xzbLnx-zDkjbKilItMq1hmNSeWDj7GAFbuguvzbyUl8li83Mj34uWxeEm4zMVn3d1JBznBi4Mgo3YwaDAugE7SePeBwxuxapAU</recordid><startdate>201809</startdate><enddate>201809</enddate><creator>Jeong, Ga-Un</creator><creator>Park, Chang Seo</creator><creator>Do, Hyeon-Seok</creator><creator>Park, Seul-Mi</creator><creator>Lee, Byeong-Joo</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201809</creationdate><title>Second nearest-neighbor modified embedded-atom method interatomic potentials for the Pd-M (M = Al, Co, Cu, Fe, Mo, Ni, Ti) binary systems</title><author>Jeong, Ga-Un ; Park, Chang Seo ; Do, Hyeon-Seok ; Park, Seul-Mi ; Lee, Byeong-Joo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c337t-376b65d78e8faee4007705aab12c5f87ab78e5b5db8fce0e849a1f2f2415e623</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Aluminum</topic><topic>Atoms & subatomic particles</topic><topic>Bimetals</topic><topic>Binary systems</topic><topic>Catalysis</topic><topic>Catalyst</topic><topic>Catalysts</topic><topic>Cobalt</topic><topic>Computer simulation</topic><topic>Copper</topic><topic>Elastic properties</topic><topic>Embedded atom method</topic><topic>Embedded systems</topic><topic>First principles</topic><topic>Interatomic potential</topic><topic>Iron</topic><topic>Metals</topic><topic>Molybdenum</topic><topic>Nanoparticles</topic><topic>Nickel</topic><topic>Noble metals</topic><topic>Order-disorder transformations</topic><topic>Palladium</topic><topic>Pd alloys</topic><topic>Second nearest-neighbor modified embedded-atom method</topic><topic>Thermodynamic properties</topic><topic>Thermodynamics</topic><topic>Titanium</topic><topic>Transition temperature</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jeong, Ga-Un</creatorcontrib><creatorcontrib>Park, Chang Seo</creatorcontrib><creatorcontrib>Do, Hyeon-Seok</creatorcontrib><creatorcontrib>Park, Seul-Mi</creatorcontrib><creatorcontrib>Lee, Byeong-Joo</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Calphad</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jeong, Ga-Un</au><au>Park, Chang Seo</au><au>Do, Hyeon-Seok</au><au>Park, Seul-Mi</au><au>Lee, Byeong-Joo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Second nearest-neighbor modified embedded-atom method interatomic potentials for the Pd-M (M = Al, Co, Cu, Fe, Mo, Ni, Ti) binary systems</atitle><jtitle>Calphad</jtitle><date>2018-09</date><risdate>2018</risdate><volume>62</volume><spage>172</spage><epage>186</epage><pages>172-186</pages><issn>0364-5916</issn><eissn>1873-2984</eissn><abstract>Palladium (Pd) has attracted attention as one of the major components of noble metal catalysts due to its excellent reactivity to a wide range of catalytic reactions. It is important to predict and control the atomic arrangement in catalysts because their properties are known to be affected by it. Therefore, to enable atomistic simulations for investigating the atomic scale structural evolution, we have developed interatomic potentials for Pd-M (M = Al, Co, Cu, Fe, Mo, Ni, Ti) binary systems based on the second nearest-neighbor modified embedded-atom method formalism. These potentials reproduce various fundamental properties of the alloys (the structural, elastic and thermodynamic properties of compound and solution phases, and order-disorder transition temperature) in reasonable agreements with experimental data, first-principles calculations and CALPHAD assessments. Herein, we propose that these potentials can be applied to the design of robust bimetallic catalysts by predicting the shape and atomic arrangement of Pd bimetallic nanoparticles.
•2NN MEAM potentials for Pd-M (M = Al, Co, Cu, Fe, Mo, Ni, Ti) binary systems are developed.•The potentials can describe various fundamental material properties of the relevant Pd alloys.•The potentials can be utilized to find the optimum process condition (size, composition of particles and process temperature) to obtain Pd bimetallic nanoparticles that yield the best catalytic performance, by predicting the shape and atomic configuration in Pd bimetallic nanoparticles.</abstract><cop>Elmsford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.calphad.2018.06.006</doi><tpages>15</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0364-5916 |
ispartof | Calphad, 2018-09, Vol.62, p.172-186 |
issn | 0364-5916 1873-2984 |
language | eng |
recordid | cdi_proquest_journals_2116841523 |
source | ScienceDirect Journals (5 years ago - present) |
subjects | Aluminum Atoms & subatomic particles Bimetals Binary systems Catalysis Catalyst Catalysts Cobalt Computer simulation Copper Elastic properties Embedded atom method Embedded systems First principles Interatomic potential Iron Metals Molybdenum Nanoparticles Nickel Noble metals Order-disorder transformations Palladium Pd alloys Second nearest-neighbor modified embedded-atom method Thermodynamic properties Thermodynamics Titanium Transition temperature |
title | Second nearest-neighbor modified embedded-atom method interatomic potentials for the Pd-M (M = Al, Co, Cu, Fe, Mo, Ni, Ti) binary systems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T12%3A14%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Second%20nearest-neighbor%20modified%20embedded-atom%20method%20interatomic%20potentials%20for%20the%20Pd-M%20(M%E2%80%AF=%E2%80%AFAl,%20Co,%20Cu,%20Fe,%20Mo,%20Ni,%20Ti)%20binary%20systems&rft.jtitle=Calphad&rft.au=Jeong,%20Ga-Un&rft.date=2018-09&rft.volume=62&rft.spage=172&rft.epage=186&rft.pages=172-186&rft.issn=0364-5916&rft.eissn=1873-2984&rft_id=info:doi/10.1016/j.calphad.2018.06.006&rft_dat=%3Cproquest_cross%3E2116841523%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2116841523&rft_id=info:pmid/&rft_els_id=S0364591618300828&rfr_iscdi=true |