Second nearest-neighbor modified embedded-atom method interatomic potentials for the Pd-M (M = Al, Co, Cu, Fe, Mo, Ni, Ti) binary systems

Palladium (Pd) has attracted attention as one of the major components of noble metal catalysts due to its excellent reactivity to a wide range of catalytic reactions. It is important to predict and control the atomic arrangement in catalysts because their properties are known to be affected by it. T...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Calphad 2018-09, Vol.62, p.172-186
Hauptverfasser: Jeong, Ga-Un, Park, Chang Seo, Do, Hyeon-Seok, Park, Seul-Mi, Lee, Byeong-Joo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 186
container_issue
container_start_page 172
container_title Calphad
container_volume 62
creator Jeong, Ga-Un
Park, Chang Seo
Do, Hyeon-Seok
Park, Seul-Mi
Lee, Byeong-Joo
description Palladium (Pd) has attracted attention as one of the major components of noble metal catalysts due to its excellent reactivity to a wide range of catalytic reactions. It is important to predict and control the atomic arrangement in catalysts because their properties are known to be affected by it. Therefore, to enable atomistic simulations for investigating the atomic scale structural evolution, we have developed interatomic potentials for Pd-M (M = Al, Co, Cu, Fe, Mo, Ni, Ti) binary systems based on the second nearest-neighbor modified embedded-atom method formalism. These potentials reproduce various fundamental properties of the alloys (the structural, elastic and thermodynamic properties of compound and solution phases, and order-disorder transition temperature) in reasonable agreements with experimental data, first-principles calculations and CALPHAD assessments. Herein, we propose that these potentials can be applied to the design of robust bimetallic catalysts by predicting the shape and atomic arrangement of Pd bimetallic nanoparticles. •2NN MEAM potentials for Pd-M (M = Al, Co, Cu, Fe, Mo, Ni, Ti) binary systems are developed.•The potentials can describe various fundamental material properties of the relevant Pd alloys.•The potentials can be utilized to find the optimum process condition (size, composition of particles and process temperature) to obtain Pd bimetallic nanoparticles that yield the best catalytic performance, by predicting the shape and atomic configuration in Pd bimetallic nanoparticles.
doi_str_mv 10.1016/j.calphad.2018.06.006
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2116841523</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0364591618300828</els_id><sourcerecordid>2116841523</sourcerecordid><originalsourceid>FETCH-LOGICAL-c337t-376b65d78e8faee4007705aab12c5f87ab78e5b5db8fce0e849a1f2f2415e623</originalsourceid><addsrcrecordid>eNqFUMFqGzEUFCWBOE4-oSDopQHvRlrtauVDCcHUbcFOAvFdaKWnWsa7ciU54Ft-oN_Sf-qXRMa55zBIPM3M0wxCnykpKaH8dlNqtd2tlSkrQkVJeEkI_4RGVLSsqKaiPkMjwnhdNFPKL9BljBtCSMtYPUJ_n0H7weABVICYigHc73XnA-69cdaBwdB3YAyYQiXf4x7S2hvshgThOHAa73yCITm1jdhmYVoDfjLFEn9d_n_99y3jfjvBM5-xn-A5TPAy3x_cBK_cDe7coMIBx0NM0McrdG6zD1y_n2O0mn9fzX4Wi8cfv2b3i0Iz1qaCtbzjjWkFCKsA6hymJY1SHa10Y0WruvzUdI3phNVAQNRTRW1lq5o2wCs2Rl9Otrvg_-xzbLnx-zDkjbKilItMq1hmNSeWDj7GAFbuguvzbyUl8li83Mj34uWxeEm4zMVn3d1JBznBi4Mgo3YwaDAugE7SePeBwxuxapAU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2116841523</pqid></control><display><type>article</type><title>Second nearest-neighbor modified embedded-atom method interatomic potentials for the Pd-M (M = Al, Co, Cu, Fe, Mo, Ni, Ti) binary systems</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Jeong, Ga-Un ; Park, Chang Seo ; Do, Hyeon-Seok ; Park, Seul-Mi ; Lee, Byeong-Joo</creator><creatorcontrib>Jeong, Ga-Un ; Park, Chang Seo ; Do, Hyeon-Seok ; Park, Seul-Mi ; Lee, Byeong-Joo</creatorcontrib><description>Palladium (Pd) has attracted attention as one of the major components of noble metal catalysts due to its excellent reactivity to a wide range of catalytic reactions. It is important to predict and control the atomic arrangement in catalysts because their properties are known to be affected by it. Therefore, to enable atomistic simulations for investigating the atomic scale structural evolution, we have developed interatomic potentials for Pd-M (M = Al, Co, Cu, Fe, Mo, Ni, Ti) binary systems based on the second nearest-neighbor modified embedded-atom method formalism. These potentials reproduce various fundamental properties of the alloys (the structural, elastic and thermodynamic properties of compound and solution phases, and order-disorder transition temperature) in reasonable agreements with experimental data, first-principles calculations and CALPHAD assessments. Herein, we propose that these potentials can be applied to the design of robust bimetallic catalysts by predicting the shape and atomic arrangement of Pd bimetallic nanoparticles. •2NN MEAM potentials for Pd-M (M = Al, Co, Cu, Fe, Mo, Ni, Ti) binary systems are developed.•The potentials can describe various fundamental material properties of the relevant Pd alloys.•The potentials can be utilized to find the optimum process condition (size, composition of particles and process temperature) to obtain Pd bimetallic nanoparticles that yield the best catalytic performance, by predicting the shape and atomic configuration in Pd bimetallic nanoparticles.</description><identifier>ISSN: 0364-5916</identifier><identifier>EISSN: 1873-2984</identifier><identifier>DOI: 10.1016/j.calphad.2018.06.006</identifier><language>eng</language><publisher>Elmsford: Elsevier Ltd</publisher><subject>Aluminum ; Atoms &amp; subatomic particles ; Bimetals ; Binary systems ; Catalysis ; Catalyst ; Catalysts ; Cobalt ; Computer simulation ; Copper ; Elastic properties ; Embedded atom method ; Embedded systems ; First principles ; Interatomic potential ; Iron ; Metals ; Molybdenum ; Nanoparticles ; Nickel ; Noble metals ; Order-disorder transformations ; Palladium ; Pd alloys ; Second nearest-neighbor modified embedded-atom method ; Thermodynamic properties ; Thermodynamics ; Titanium ; Transition temperature</subject><ispartof>Calphad, 2018-09, Vol.62, p.172-186</ispartof><rights>2018 Elsevier Ltd</rights><rights>Copyright Elsevier BV Sep 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c337t-376b65d78e8faee4007705aab12c5f87ab78e5b5db8fce0e849a1f2f2415e623</citedby><cites>FETCH-LOGICAL-c337t-376b65d78e8faee4007705aab12c5f87ab78e5b5db8fce0e849a1f2f2415e623</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.calphad.2018.06.006$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3548,27923,27924,45994</link.rule.ids></links><search><creatorcontrib>Jeong, Ga-Un</creatorcontrib><creatorcontrib>Park, Chang Seo</creatorcontrib><creatorcontrib>Do, Hyeon-Seok</creatorcontrib><creatorcontrib>Park, Seul-Mi</creatorcontrib><creatorcontrib>Lee, Byeong-Joo</creatorcontrib><title>Second nearest-neighbor modified embedded-atom method interatomic potentials for the Pd-M (M = Al, Co, Cu, Fe, Mo, Ni, Ti) binary systems</title><title>Calphad</title><description>Palladium (Pd) has attracted attention as one of the major components of noble metal catalysts due to its excellent reactivity to a wide range of catalytic reactions. It is important to predict and control the atomic arrangement in catalysts because their properties are known to be affected by it. Therefore, to enable atomistic simulations for investigating the atomic scale structural evolution, we have developed interatomic potentials for Pd-M (M = Al, Co, Cu, Fe, Mo, Ni, Ti) binary systems based on the second nearest-neighbor modified embedded-atom method formalism. These potentials reproduce various fundamental properties of the alloys (the structural, elastic and thermodynamic properties of compound and solution phases, and order-disorder transition temperature) in reasonable agreements with experimental data, first-principles calculations and CALPHAD assessments. Herein, we propose that these potentials can be applied to the design of robust bimetallic catalysts by predicting the shape and atomic arrangement of Pd bimetallic nanoparticles. •2NN MEAM potentials for Pd-M (M = Al, Co, Cu, Fe, Mo, Ni, Ti) binary systems are developed.•The potentials can describe various fundamental material properties of the relevant Pd alloys.•The potentials can be utilized to find the optimum process condition (size, composition of particles and process temperature) to obtain Pd bimetallic nanoparticles that yield the best catalytic performance, by predicting the shape and atomic configuration in Pd bimetallic nanoparticles.</description><subject>Aluminum</subject><subject>Atoms &amp; subatomic particles</subject><subject>Bimetals</subject><subject>Binary systems</subject><subject>Catalysis</subject><subject>Catalyst</subject><subject>Catalysts</subject><subject>Cobalt</subject><subject>Computer simulation</subject><subject>Copper</subject><subject>Elastic properties</subject><subject>Embedded atom method</subject><subject>Embedded systems</subject><subject>First principles</subject><subject>Interatomic potential</subject><subject>Iron</subject><subject>Metals</subject><subject>Molybdenum</subject><subject>Nanoparticles</subject><subject>Nickel</subject><subject>Noble metals</subject><subject>Order-disorder transformations</subject><subject>Palladium</subject><subject>Pd alloys</subject><subject>Second nearest-neighbor modified embedded-atom method</subject><subject>Thermodynamic properties</subject><subject>Thermodynamics</subject><subject>Titanium</subject><subject>Transition temperature</subject><issn>0364-5916</issn><issn>1873-2984</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqFUMFqGzEUFCWBOE4-oSDopQHvRlrtauVDCcHUbcFOAvFdaKWnWsa7ciU54Ft-oN_Sf-qXRMa55zBIPM3M0wxCnykpKaH8dlNqtd2tlSkrQkVJeEkI_4RGVLSsqKaiPkMjwnhdNFPKL9BljBtCSMtYPUJ_n0H7weABVICYigHc73XnA-69cdaBwdB3YAyYQiXf4x7S2hvshgThOHAa73yCITm1jdhmYVoDfjLFEn9d_n_99y3jfjvBM5-xn-A5TPAy3x_cBK_cDe7coMIBx0NM0McrdG6zD1y_n2O0mn9fzX4Wi8cfv2b3i0Iz1qaCtbzjjWkFCKsA6hymJY1SHa10Y0WruvzUdI3phNVAQNRTRW1lq5o2wCs2Rl9Otrvg_-xzbLnx-zDkjbKilItMq1hmNSeWDj7GAFbuguvzbyUl8li83Mj34uWxeEm4zMVn3d1JBznBi4Mgo3YwaDAugE7SePeBwxuxapAU</recordid><startdate>201809</startdate><enddate>201809</enddate><creator>Jeong, Ga-Un</creator><creator>Park, Chang Seo</creator><creator>Do, Hyeon-Seok</creator><creator>Park, Seul-Mi</creator><creator>Lee, Byeong-Joo</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201809</creationdate><title>Second nearest-neighbor modified embedded-atom method interatomic potentials for the Pd-M (M = Al, Co, Cu, Fe, Mo, Ni, Ti) binary systems</title><author>Jeong, Ga-Un ; Park, Chang Seo ; Do, Hyeon-Seok ; Park, Seul-Mi ; Lee, Byeong-Joo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c337t-376b65d78e8faee4007705aab12c5f87ab78e5b5db8fce0e849a1f2f2415e623</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Aluminum</topic><topic>Atoms &amp; subatomic particles</topic><topic>Bimetals</topic><topic>Binary systems</topic><topic>Catalysis</topic><topic>Catalyst</topic><topic>Catalysts</topic><topic>Cobalt</topic><topic>Computer simulation</topic><topic>Copper</topic><topic>Elastic properties</topic><topic>Embedded atom method</topic><topic>Embedded systems</topic><topic>First principles</topic><topic>Interatomic potential</topic><topic>Iron</topic><topic>Metals</topic><topic>Molybdenum</topic><topic>Nanoparticles</topic><topic>Nickel</topic><topic>Noble metals</topic><topic>Order-disorder transformations</topic><topic>Palladium</topic><topic>Pd alloys</topic><topic>Second nearest-neighbor modified embedded-atom method</topic><topic>Thermodynamic properties</topic><topic>Thermodynamics</topic><topic>Titanium</topic><topic>Transition temperature</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jeong, Ga-Un</creatorcontrib><creatorcontrib>Park, Chang Seo</creatorcontrib><creatorcontrib>Do, Hyeon-Seok</creatorcontrib><creatorcontrib>Park, Seul-Mi</creatorcontrib><creatorcontrib>Lee, Byeong-Joo</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Calphad</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jeong, Ga-Un</au><au>Park, Chang Seo</au><au>Do, Hyeon-Seok</au><au>Park, Seul-Mi</au><au>Lee, Byeong-Joo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Second nearest-neighbor modified embedded-atom method interatomic potentials for the Pd-M (M = Al, Co, Cu, Fe, Mo, Ni, Ti) binary systems</atitle><jtitle>Calphad</jtitle><date>2018-09</date><risdate>2018</risdate><volume>62</volume><spage>172</spage><epage>186</epage><pages>172-186</pages><issn>0364-5916</issn><eissn>1873-2984</eissn><abstract>Palladium (Pd) has attracted attention as one of the major components of noble metal catalysts due to its excellent reactivity to a wide range of catalytic reactions. It is important to predict and control the atomic arrangement in catalysts because their properties are known to be affected by it. Therefore, to enable atomistic simulations for investigating the atomic scale structural evolution, we have developed interatomic potentials for Pd-M (M = Al, Co, Cu, Fe, Mo, Ni, Ti) binary systems based on the second nearest-neighbor modified embedded-atom method formalism. These potentials reproduce various fundamental properties of the alloys (the structural, elastic and thermodynamic properties of compound and solution phases, and order-disorder transition temperature) in reasonable agreements with experimental data, first-principles calculations and CALPHAD assessments. Herein, we propose that these potentials can be applied to the design of robust bimetallic catalysts by predicting the shape and atomic arrangement of Pd bimetallic nanoparticles. •2NN MEAM potentials for Pd-M (M = Al, Co, Cu, Fe, Mo, Ni, Ti) binary systems are developed.•The potentials can describe various fundamental material properties of the relevant Pd alloys.•The potentials can be utilized to find the optimum process condition (size, composition of particles and process temperature) to obtain Pd bimetallic nanoparticles that yield the best catalytic performance, by predicting the shape and atomic configuration in Pd bimetallic nanoparticles.</abstract><cop>Elmsford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.calphad.2018.06.006</doi><tpages>15</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0364-5916
ispartof Calphad, 2018-09, Vol.62, p.172-186
issn 0364-5916
1873-2984
language eng
recordid cdi_proquest_journals_2116841523
source ScienceDirect Journals (5 years ago - present)
subjects Aluminum
Atoms & subatomic particles
Bimetals
Binary systems
Catalysis
Catalyst
Catalysts
Cobalt
Computer simulation
Copper
Elastic properties
Embedded atom method
Embedded systems
First principles
Interatomic potential
Iron
Metals
Molybdenum
Nanoparticles
Nickel
Noble metals
Order-disorder transformations
Palladium
Pd alloys
Second nearest-neighbor modified embedded-atom method
Thermodynamic properties
Thermodynamics
Titanium
Transition temperature
title Second nearest-neighbor modified embedded-atom method interatomic potentials for the Pd-M (M = Al, Co, Cu, Fe, Mo, Ni, Ti) binary systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T12%3A14%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Second%20nearest-neighbor%20modified%20embedded-atom%20method%20interatomic%20potentials%20for%20the%20Pd-M%20(M%E2%80%AF=%E2%80%AFAl,%20Co,%20Cu,%20Fe,%20Mo,%20Ni,%20Ti)%20binary%20systems&rft.jtitle=Calphad&rft.au=Jeong,%20Ga-Un&rft.date=2018-09&rft.volume=62&rft.spage=172&rft.epage=186&rft.pages=172-186&rft.issn=0364-5916&rft.eissn=1873-2984&rft_id=info:doi/10.1016/j.calphad.2018.06.006&rft_dat=%3Cproquest_cross%3E2116841523%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2116841523&rft_id=info:pmid/&rft_els_id=S0364591618300828&rfr_iscdi=true