Trajectory Design and Tracking Control for Nonlinear Underactuated Wheeled Inverted Pendulum

An underactuated wheeled inverted pendulum (UWIP) is a nonlinear mechanical system that has two degrees of freedom and has only one control input. The motion planning problem for this nonlinear system is difficult to solve because of the existence of an uncontrollable manifold in the configuration s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical problems in engineering 2018-01, Vol.2018 (2018), p.1-10
Hauptverfasser: Zhang, Xinghui, She, Jinhua, Zhang, Ancai, Gong, Shuli, Liu, Yuanyuan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 10
container_issue 2018
container_start_page 1
container_title Mathematical problems in engineering
container_volume 2018
creator Zhang, Xinghui
She, Jinhua
Zhang, Ancai
Gong, Shuli
Liu, Yuanyuan
description An underactuated wheeled inverted pendulum (UWIP) is a nonlinear mechanical system that has two degrees of freedom and has only one control input. The motion planning problem for this nonlinear system is difficult to solve because of the existence of an uncontrollable manifold in the configuration space. In this paper, we present a method of designing motion trajectory for this underactuated system. The design of trajectory is based on the dynamic properties of the UWIP system. Furthermore, the tracking control of the UWIP for the constructed trajectory is also studied. A tracking control law is designed by using quadratic optimal control theory. Numerical simulation results verify the effectiveness of the presented theoretical results.
doi_str_mv 10.1155/2018/6134764
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2116808845</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2116808845</sourcerecordid><originalsourceid>FETCH-LOGICAL-c426t-e8029ebbd006ea13eb1f5f0d4270cc967bff00b5e3df821f1e159b6c534638793</originalsourceid><addsrcrecordid>eNqF0M9LwzAUB_AgCs7pzbMUPGpdXtKk6VHmr8FQDxt6EEravmydXTLTVtl_b0cHHj19H48P78GXkHOgNwBCjBgFNZLAo1hGB2QAQvJQQBQfdjNlUQiMvx-Tk7peUcpAgBqQj5nXK8wb57fBHdblwgbaFkG3zT9LuwjGzjbeVYFxPnh2tiotah_MbYGdaFrdYBG8LRGrLif2G_1u8Yq2aKt2fUqOjK5qPNvnkMwf7mfjp3D68jgZ307DPGKyCVFRlmCWFZRK1MAxAyMMLSIW0zxPZJwZQ2kmkBdGMTCAIJJM5oJHkqs44UNy2d_dePfVYt2kK9d6271MGYBUVKlIdOq6V7l3de3RpBtfrrXfpkDTXX_prr9031_Hr3q-LG2hf8r_9EWvsTNo9J9mVDEm-S90ZnnO</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2116808845</pqid></control><display><type>article</type><title>Trajectory Design and Tracking Control for Nonlinear Underactuated Wheeled Inverted Pendulum</title><source>Wiley Online Library Open Access</source><source>EZB Free E-Journals</source><source>Alma/SFX Local Collection</source><creator>Zhang, Xinghui ; She, Jinhua ; Zhang, Ancai ; Gong, Shuli ; Liu, Yuanyuan</creator><contributor>Park, Ju H. ; Ju H Park</contributor><creatorcontrib>Zhang, Xinghui ; She, Jinhua ; Zhang, Ancai ; Gong, Shuli ; Liu, Yuanyuan ; Park, Ju H. ; Ju H Park</creatorcontrib><description>An underactuated wheeled inverted pendulum (UWIP) is a nonlinear mechanical system that has two degrees of freedom and has only one control input. The motion planning problem for this nonlinear system is difficult to solve because of the existence of an uncontrollable manifold in the configuration space. In this paper, we present a method of designing motion trajectory for this underactuated system. The design of trajectory is based on the dynamic properties of the UWIP system. Furthermore, the tracking control of the UWIP for the constructed trajectory is also studied. A tracking control law is designed by using quadratic optimal control theory. Numerical simulation results verify the effectiveness of the presented theoretical results.</description><identifier>ISSN: 1024-123X</identifier><identifier>EISSN: 1563-5147</identifier><identifier>DOI: 10.1155/2018/6134764</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Publishing Corporation</publisher><subject>Aircraft ; Computer simulation ; Control theory ; Cybernetics ; Engineering ; Equilibrium ; Motion planning ; Nonlinear control ; Nonlinear systems ; Optimal control ; Tracking control ; Trajectory control</subject><ispartof>Mathematical problems in engineering, 2018-01, Vol.2018 (2018), p.1-10</ispartof><rights>Copyright © 2018 Shuli Gong et al.</rights><rights>Copyright © 2018 Shuli Gong et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c426t-e8029ebbd006ea13eb1f5f0d4270cc967bff00b5e3df821f1e159b6c534638793</citedby><cites>FETCH-LOGICAL-c426t-e8029ebbd006ea13eb1f5f0d4270cc967bff00b5e3df821f1e159b6c534638793</cites><orcidid>0000-0003-3165-5045 ; 0000-0003-0652-9979 ; 0000-0003-3961-8580 ; 0000-0001-7573-6264</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><contributor>Park, Ju H.</contributor><contributor>Ju H Park</contributor><creatorcontrib>Zhang, Xinghui</creatorcontrib><creatorcontrib>She, Jinhua</creatorcontrib><creatorcontrib>Zhang, Ancai</creatorcontrib><creatorcontrib>Gong, Shuli</creatorcontrib><creatorcontrib>Liu, Yuanyuan</creatorcontrib><title>Trajectory Design and Tracking Control for Nonlinear Underactuated Wheeled Inverted Pendulum</title><title>Mathematical problems in engineering</title><description>An underactuated wheeled inverted pendulum (UWIP) is a nonlinear mechanical system that has two degrees of freedom and has only one control input. The motion planning problem for this nonlinear system is difficult to solve because of the existence of an uncontrollable manifold in the configuration space. In this paper, we present a method of designing motion trajectory for this underactuated system. The design of trajectory is based on the dynamic properties of the UWIP system. Furthermore, the tracking control of the UWIP for the constructed trajectory is also studied. A tracking control law is designed by using quadratic optimal control theory. Numerical simulation results verify the effectiveness of the presented theoretical results.</description><subject>Aircraft</subject><subject>Computer simulation</subject><subject>Control theory</subject><subject>Cybernetics</subject><subject>Engineering</subject><subject>Equilibrium</subject><subject>Motion planning</subject><subject>Nonlinear control</subject><subject>Nonlinear systems</subject><subject>Optimal control</subject><subject>Tracking control</subject><subject>Trajectory control</subject><issn>1024-123X</issn><issn>1563-5147</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><sourceid>BENPR</sourceid><recordid>eNqF0M9LwzAUB_AgCs7pzbMUPGpdXtKk6VHmr8FQDxt6EEravmydXTLTVtl_b0cHHj19H48P78GXkHOgNwBCjBgFNZLAo1hGB2QAQvJQQBQfdjNlUQiMvx-Tk7peUcpAgBqQj5nXK8wb57fBHdblwgbaFkG3zT9LuwjGzjbeVYFxPnh2tiotah_MbYGdaFrdYBG8LRGrLif2G_1u8Yq2aKt2fUqOjK5qPNvnkMwf7mfjp3D68jgZ307DPGKyCVFRlmCWFZRK1MAxAyMMLSIW0zxPZJwZQ2kmkBdGMTCAIJJM5oJHkqs44UNy2d_dePfVYt2kK9d6271MGYBUVKlIdOq6V7l3de3RpBtfrrXfpkDTXX_prr9031_Hr3q-LG2hf8r_9EWvsTNo9J9mVDEm-S90ZnnO</recordid><startdate>20180101</startdate><enddate>20180101</enddate><creator>Zhang, Xinghui</creator><creator>She, Jinhua</creator><creator>Zhang, Ancai</creator><creator>Gong, Shuli</creator><creator>Liu, Yuanyuan</creator><general>Hindawi Publishing Corporation</general><general>Hindawi</general><general>Hindawi Limited</general><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0003-3165-5045</orcidid><orcidid>https://orcid.org/0000-0003-0652-9979</orcidid><orcidid>https://orcid.org/0000-0003-3961-8580</orcidid><orcidid>https://orcid.org/0000-0001-7573-6264</orcidid></search><sort><creationdate>20180101</creationdate><title>Trajectory Design and Tracking Control for Nonlinear Underactuated Wheeled Inverted Pendulum</title><author>Zhang, Xinghui ; She, Jinhua ; Zhang, Ancai ; Gong, Shuli ; Liu, Yuanyuan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c426t-e8029ebbd006ea13eb1f5f0d4270cc967bff00b5e3df821f1e159b6c534638793</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Aircraft</topic><topic>Computer simulation</topic><topic>Control theory</topic><topic>Cybernetics</topic><topic>Engineering</topic><topic>Equilibrium</topic><topic>Motion planning</topic><topic>Nonlinear control</topic><topic>Nonlinear systems</topic><topic>Optimal control</topic><topic>Tracking control</topic><topic>Trajectory control</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Xinghui</creatorcontrib><creatorcontrib>She, Jinhua</creatorcontrib><creatorcontrib>Zhang, Ancai</creatorcontrib><creatorcontrib>Gong, Shuli</creatorcontrib><creatorcontrib>Liu, Yuanyuan</creatorcontrib><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access Journals</collection><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Middle East &amp; Africa Database</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><jtitle>Mathematical problems in engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Xinghui</au><au>She, Jinhua</au><au>Zhang, Ancai</au><au>Gong, Shuli</au><au>Liu, Yuanyuan</au><au>Park, Ju H.</au><au>Ju H Park</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Trajectory Design and Tracking Control for Nonlinear Underactuated Wheeled Inverted Pendulum</atitle><jtitle>Mathematical problems in engineering</jtitle><date>2018-01-01</date><risdate>2018</risdate><volume>2018</volume><issue>2018</issue><spage>1</spage><epage>10</epage><pages>1-10</pages><issn>1024-123X</issn><eissn>1563-5147</eissn><abstract>An underactuated wheeled inverted pendulum (UWIP) is a nonlinear mechanical system that has two degrees of freedom and has only one control input. The motion planning problem for this nonlinear system is difficult to solve because of the existence of an uncontrollable manifold in the configuration space. In this paper, we present a method of designing motion trajectory for this underactuated system. The design of trajectory is based on the dynamic properties of the UWIP system. Furthermore, the tracking control of the UWIP for the constructed trajectory is also studied. A tracking control law is designed by using quadratic optimal control theory. Numerical simulation results verify the effectiveness of the presented theoretical results.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Publishing Corporation</pub><doi>10.1155/2018/6134764</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-3165-5045</orcidid><orcidid>https://orcid.org/0000-0003-0652-9979</orcidid><orcidid>https://orcid.org/0000-0003-3961-8580</orcidid><orcidid>https://orcid.org/0000-0001-7573-6264</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1024-123X
ispartof Mathematical problems in engineering, 2018-01, Vol.2018 (2018), p.1-10
issn 1024-123X
1563-5147
language eng
recordid cdi_proquest_journals_2116808845
source Wiley Online Library Open Access; EZB Free E-Journals; Alma/SFX Local Collection
subjects Aircraft
Computer simulation
Control theory
Cybernetics
Engineering
Equilibrium
Motion planning
Nonlinear control
Nonlinear systems
Optimal control
Tracking control
Trajectory control
title Trajectory Design and Tracking Control for Nonlinear Underactuated Wheeled Inverted Pendulum
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T18%3A18%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Trajectory%20Design%20and%20Tracking%20Control%20for%20Nonlinear%20Underactuated%20Wheeled%20Inverted%20Pendulum&rft.jtitle=Mathematical%20problems%20in%20engineering&rft.au=Zhang,%20Xinghui&rft.date=2018-01-01&rft.volume=2018&rft.issue=2018&rft.spage=1&rft.epage=10&rft.pages=1-10&rft.issn=1024-123X&rft.eissn=1563-5147&rft_id=info:doi/10.1155/2018/6134764&rft_dat=%3Cproquest_cross%3E2116808845%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2116808845&rft_id=info:pmid/&rfr_iscdi=true