Optimal Multirobot Coverage Path Planning: Ideal-Shaped Spanning Tree

The present paper attempts to find the optimal coverage path for multiple robots in a given area including obstacles. For single robot coverage path planning (CPP) problem, an improved ant colony optimization (ACO) algorithm is proposed to construct the best spanning tree and then obtain the optimal...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical problems in engineering 2018-01, Vol.2018 (2018), p.1-10
Hauptverfasser: Li, You, Xu, An, Li, Zhanwu, Kou, Yingxin, Gao, Chunqing, Chang, Yizhe
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 10
container_issue 2018
container_start_page 1
container_title Mathematical problems in engineering
container_volume 2018
creator Li, You
Xu, An
Li, Zhanwu
Kou, Yingxin
Gao, Chunqing
Chang, Yizhe
description The present paper attempts to find the optimal coverage path for multiple robots in a given area including obstacles. For single robot coverage path planning (CPP) problem, an improved ant colony optimization (ACO) algorithm is proposed to construct the best spanning tree and then obtain the optimal path, which contributes to minimizing the energy/time consumption. For the multirobot case, first the DARP (Divide Areas based on Robots Initial Positions) algorithm is utilized to divide the area into separate equal subareas, so much so that it transforms the mCPP problem into several CPP problems, degrading the computation complexity. During the second phase, spanning tree in each subarea is constructed by the aforementioned algorithm. In the last phase, the specific end nodes are exchanged among subareas to achieve ideal-shaped spanning trees, which can also decrease the number of turns in coverage path. And the complete algorithms are proven to be approximately polynomial algorithms. Finally, the simulation confirms the complete algorithms’ advantages: complete coverage, nonbacktracks, minimum length, zero preparation time, and the least number of turns.
doi_str_mv 10.1155/2018/3436429
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2116808820</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2116808820</sourcerecordid><originalsourceid>FETCH-LOGICAL-c426t-a602836d354b86eeb7da8c0fa8bbfb78da398ad55db319817c170e589cfee0f83</originalsourceid><addsrcrecordid>eNqF0M9LwzAUB_AgCs7pzbMUPGpdXtKkqTcZUweTDTbBW0mbl62jtjXtJv73ZnTg0VMe4cP78SXkGugDgBAjRkGNeMRlxJITMgAheSggik99TVkUAuMf5-SibbeUMhCgBmQyb7riU5fB267sCldndReM6z06vcZgobtNsCh1VRXV-jGYGtRluNzoBk2wbPrvYOUQL8mZ1WWLV8d3SN6fJ6vxazibv0zHT7Mwj5jsQi0pU1waLqJMScQsNlrl1GqVZTaLldE8UdoIYTIOiYI4h5iiUEluEalVfEhu-76Nq7922Hbptt65yo9MGYBUVClGvbrvVe7qtnVo08b5G91PCjQ9BJUegkqPQXl-1_NNURn9Xfynb3qN3qDVf5pR6Vfmv0zNcRY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2116808820</pqid></control><display><type>article</type><title>Optimal Multirobot Coverage Path Planning: Ideal-Shaped Spanning Tree</title><source>Wiley-Blackwell Open Access Titles</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Li, You ; Xu, An ; Li, Zhanwu ; Kou, Yingxin ; Gao, Chunqing ; Chang, Yizhe</creator><contributor>Naddeo, Alessandro ; Alessandro Naddeo</contributor><creatorcontrib>Li, You ; Xu, An ; Li, Zhanwu ; Kou, Yingxin ; Gao, Chunqing ; Chang, Yizhe ; Naddeo, Alessandro ; Alessandro Naddeo</creatorcontrib><description>The present paper attempts to find the optimal coverage path for multiple robots in a given area including obstacles. For single robot coverage path planning (CPP) problem, an improved ant colony optimization (ACO) algorithm is proposed to construct the best spanning tree and then obtain the optimal path, which contributes to minimizing the energy/time consumption. For the multirobot case, first the DARP (Divide Areas based on Robots Initial Positions) algorithm is utilized to divide the area into separate equal subareas, so much so that it transforms the mCPP problem into several CPP problems, degrading the computation complexity. During the second phase, spanning tree in each subarea is constructed by the aforementioned algorithm. In the last phase, the specific end nodes are exchanged among subareas to achieve ideal-shaped spanning trees, which can also decrease the number of turns in coverage path. And the complete algorithms are proven to be approximately polynomial algorithms. Finally, the simulation confirms the complete algorithms’ advantages: complete coverage, nonbacktracks, minimum length, zero preparation time, and the least number of turns.</description><identifier>ISSN: 1024-123X</identifier><identifier>EISSN: 1563-5147</identifier><identifier>DOI: 10.1155/2018/3436429</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Publishing Corporation</publisher><subject>Algorithms ; Ant colony optimization ; Automation ; Computer simulation ; Decomposition ; Graph theory ; Intelligence ; International conferences ; Methods ; Multiple robots ; Path planning ; Robotics ; Robots</subject><ispartof>Mathematical problems in engineering, 2018-01, Vol.2018 (2018), p.1-10</ispartof><rights>Copyright © 2018 Chunqing Gao et al.</rights><rights>Copyright © 2018 Chunqing Gao et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c426t-a602836d354b86eeb7da8c0fa8bbfb78da398ad55db319817c170e589cfee0f83</citedby><cites>FETCH-LOGICAL-c426t-a602836d354b86eeb7da8c0fa8bbfb78da398ad55db319817c170e589cfee0f83</cites><orcidid>0000-0001-8205-4501 ; 0000-0001-8241-7018 ; 0000-0001-7093-5862 ; 0000-0002-3293-4655</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><contributor>Naddeo, Alessandro</contributor><contributor>Alessandro Naddeo</contributor><creatorcontrib>Li, You</creatorcontrib><creatorcontrib>Xu, An</creatorcontrib><creatorcontrib>Li, Zhanwu</creatorcontrib><creatorcontrib>Kou, Yingxin</creatorcontrib><creatorcontrib>Gao, Chunqing</creatorcontrib><creatorcontrib>Chang, Yizhe</creatorcontrib><title>Optimal Multirobot Coverage Path Planning: Ideal-Shaped Spanning Tree</title><title>Mathematical problems in engineering</title><description>The present paper attempts to find the optimal coverage path for multiple robots in a given area including obstacles. For single robot coverage path planning (CPP) problem, an improved ant colony optimization (ACO) algorithm is proposed to construct the best spanning tree and then obtain the optimal path, which contributes to minimizing the energy/time consumption. For the multirobot case, first the DARP (Divide Areas based on Robots Initial Positions) algorithm is utilized to divide the area into separate equal subareas, so much so that it transforms the mCPP problem into several CPP problems, degrading the computation complexity. During the second phase, spanning tree in each subarea is constructed by the aforementioned algorithm. In the last phase, the specific end nodes are exchanged among subareas to achieve ideal-shaped spanning trees, which can also decrease the number of turns in coverage path. And the complete algorithms are proven to be approximately polynomial algorithms. Finally, the simulation confirms the complete algorithms’ advantages: complete coverage, nonbacktracks, minimum length, zero preparation time, and the least number of turns.</description><subject>Algorithms</subject><subject>Ant colony optimization</subject><subject>Automation</subject><subject>Computer simulation</subject><subject>Decomposition</subject><subject>Graph theory</subject><subject>Intelligence</subject><subject>International conferences</subject><subject>Methods</subject><subject>Multiple robots</subject><subject>Path planning</subject><subject>Robotics</subject><subject>Robots</subject><issn>1024-123X</issn><issn>1563-5147</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqF0M9LwzAUB_AgCs7pzbMUPGpdXtKkqTcZUweTDTbBW0mbl62jtjXtJv73ZnTg0VMe4cP78SXkGugDgBAjRkGNeMRlxJITMgAheSggik99TVkUAuMf5-SibbeUMhCgBmQyb7riU5fB267sCldndReM6z06vcZgobtNsCh1VRXV-jGYGtRluNzoBk2wbPrvYOUQL8mZ1WWLV8d3SN6fJ6vxazibv0zHT7Mwj5jsQi0pU1waLqJMScQsNlrl1GqVZTaLldE8UdoIYTIOiYI4h5iiUEluEalVfEhu-76Nq7922Hbptt65yo9MGYBUVClGvbrvVe7qtnVo08b5G91PCjQ9BJUegkqPQXl-1_NNURn9Xfynb3qN3qDVf5pR6Vfmv0zNcRY</recordid><startdate>20180101</startdate><enddate>20180101</enddate><creator>Li, You</creator><creator>Xu, An</creator><creator>Li, Zhanwu</creator><creator>Kou, Yingxin</creator><creator>Gao, Chunqing</creator><creator>Chang, Yizhe</creator><general>Hindawi Publishing Corporation</general><general>Hindawi</general><general>Hindawi Limited</general><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0001-8205-4501</orcidid><orcidid>https://orcid.org/0000-0001-8241-7018</orcidid><orcidid>https://orcid.org/0000-0001-7093-5862</orcidid><orcidid>https://orcid.org/0000-0002-3293-4655</orcidid></search><sort><creationdate>20180101</creationdate><title>Optimal Multirobot Coverage Path Planning: Ideal-Shaped Spanning Tree</title><author>Li, You ; Xu, An ; Li, Zhanwu ; Kou, Yingxin ; Gao, Chunqing ; Chang, Yizhe</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c426t-a602836d354b86eeb7da8c0fa8bbfb78da398ad55db319817c170e589cfee0f83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Algorithms</topic><topic>Ant colony optimization</topic><topic>Automation</topic><topic>Computer simulation</topic><topic>Decomposition</topic><topic>Graph theory</topic><topic>Intelligence</topic><topic>International conferences</topic><topic>Methods</topic><topic>Multiple robots</topic><topic>Path planning</topic><topic>Robotics</topic><topic>Robots</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, You</creatorcontrib><creatorcontrib>Xu, An</creatorcontrib><creatorcontrib>Li, Zhanwu</creatorcontrib><creatorcontrib>Kou, Yingxin</creatorcontrib><creatorcontrib>Gao, Chunqing</creatorcontrib><creatorcontrib>Chang, Yizhe</creatorcontrib><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access Journals</collection><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Middle East &amp; Africa Database</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Mathematical problems in engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, You</au><au>Xu, An</au><au>Li, Zhanwu</au><au>Kou, Yingxin</au><au>Gao, Chunqing</au><au>Chang, Yizhe</au><au>Naddeo, Alessandro</au><au>Alessandro Naddeo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimal Multirobot Coverage Path Planning: Ideal-Shaped Spanning Tree</atitle><jtitle>Mathematical problems in engineering</jtitle><date>2018-01-01</date><risdate>2018</risdate><volume>2018</volume><issue>2018</issue><spage>1</spage><epage>10</epage><pages>1-10</pages><issn>1024-123X</issn><eissn>1563-5147</eissn><abstract>The present paper attempts to find the optimal coverage path for multiple robots in a given area including obstacles. For single robot coverage path planning (CPP) problem, an improved ant colony optimization (ACO) algorithm is proposed to construct the best spanning tree and then obtain the optimal path, which contributes to minimizing the energy/time consumption. For the multirobot case, first the DARP (Divide Areas based on Robots Initial Positions) algorithm is utilized to divide the area into separate equal subareas, so much so that it transforms the mCPP problem into several CPP problems, degrading the computation complexity. During the second phase, spanning tree in each subarea is constructed by the aforementioned algorithm. In the last phase, the specific end nodes are exchanged among subareas to achieve ideal-shaped spanning trees, which can also decrease the number of turns in coverage path. And the complete algorithms are proven to be approximately polynomial algorithms. Finally, the simulation confirms the complete algorithms’ advantages: complete coverage, nonbacktracks, minimum length, zero preparation time, and the least number of turns.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Publishing Corporation</pub><doi>10.1155/2018/3436429</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-8205-4501</orcidid><orcidid>https://orcid.org/0000-0001-8241-7018</orcidid><orcidid>https://orcid.org/0000-0001-7093-5862</orcidid><orcidid>https://orcid.org/0000-0002-3293-4655</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1024-123X
ispartof Mathematical problems in engineering, 2018-01, Vol.2018 (2018), p.1-10
issn 1024-123X
1563-5147
language eng
recordid cdi_proquest_journals_2116808820
source Wiley-Blackwell Open Access Titles; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection
subjects Algorithms
Ant colony optimization
Automation
Computer simulation
Decomposition
Graph theory
Intelligence
International conferences
Methods
Multiple robots
Path planning
Robotics
Robots
title Optimal Multirobot Coverage Path Planning: Ideal-Shaped Spanning Tree
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T07%3A16%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimal%20Multirobot%20Coverage%20Path%20Planning:%20Ideal-Shaped%20Spanning%20Tree&rft.jtitle=Mathematical%20problems%20in%20engineering&rft.au=Li,%20You&rft.date=2018-01-01&rft.volume=2018&rft.issue=2018&rft.spage=1&rft.epage=10&rft.pages=1-10&rft.issn=1024-123X&rft.eissn=1563-5147&rft_id=info:doi/10.1155/2018/3436429&rft_dat=%3Cproquest_cross%3E2116808820%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2116808820&rft_id=info:pmid/&rfr_iscdi=true