KIOPS: A fast adaptive Krylov subspace solver for exponential integrators
•KIOPS, a new Krylov subspace algorithm for computing linear combinations of φ-functions is presented.•KIOPS uses the incomplete orthogonalization procedure and an adaptive strategy to determine the optimal parameters.•Numerical experiments demonstrate that KIOPS outperforms the current state-of-the...
Gespeichert in:
Veröffentlicht in: | Journal of computational physics 2018-11, Vol.372, p.236-255 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 255 |
---|---|
container_issue | |
container_start_page | 236 |
container_title | Journal of computational physics |
container_volume | 372 |
creator | Gaudreault, Stéphane Rainwater, Greg Tokman, Mayya |
description | •KIOPS, a new Krylov subspace algorithm for computing linear combinations of φ-functions is presented.•KIOPS uses the incomplete orthogonalization procedure and an adaptive strategy to determine the optimal parameters.•Numerical experiments demonstrate that KIOPS outperforms the current state-of-the-art adaptive Krylov algorithm.
This paper presents a new algorithm KIOPS for computing linear combinations of φ-functions that appear in exponential integrators. This algorithm is suitable for large-scale problems in computational physics where little or no information about the spectrum or norm of the Jacobian matrix is known a priori. We first show that such problems can be solved efficiently by computing a single exponential of a modified matrix. Then our approach is to compute an appropriate basis for the Krylov subspace using the incomplete orthogonalization procedure and project the matrix exponential on this subspace. We also present a novel adaptive procedure that significantly reduces the computational complexity of exponential integrators. Our numerical experiments demonstrate that KIOPS outperforms the current state-of-the-art adaptive Krylov algorithm phipm. |
doi_str_mv | 10.1016/j.jcp.2018.06.026 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2116623796</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021999118304042</els_id><sourcerecordid>2116623796</sourcerecordid><originalsourceid>FETCH-LOGICAL-c368t-8c2323c238e273e69529335c01da7d711c8ebc8414561ed2427439893c8ab8673</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EEqXwAewssU7w2Iljw6pCPKpWKhKwtlxnghKFONhpRP-eVGXNZmZzz53RIeQaWAoM5G2TNq5POQOVMpkyLk_IDJhmCS9AnpIZYxwSrTWck4sYG8aYyjM1I8vVcvP6dkcXtLJxoLa0_VCPSFdh3_qRxt029tYhjb4dMdDKB4o_ve-wG2rb0rob8DPYwYd4Sc4q20a8-ttz8vH0-P7wkqw3z8uHxTpxQqohUY4LLqahkBcCpc65FiJ3DEpblAWAU7h1KoMsl4Alz3iRCa20cMpulSzEnNwce_vgv3cYB9P4Xeimk4YDSMlFoeWUgmPKBR9jwMr0of6yYW-AmYMx05jJmDkYM0yaydjE3B8ZnN4fawwmuho7h2Ud0A2m9PU_9C8dwHHc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2116623796</pqid></control><display><type>article</type><title>KIOPS: A fast adaptive Krylov subspace solver for exponential integrators</title><source>Elsevier ScienceDirect Journals</source><creator>Gaudreault, Stéphane ; Rainwater, Greg ; Tokman, Mayya</creator><creatorcontrib>Gaudreault, Stéphane ; Rainwater, Greg ; Tokman, Mayya</creatorcontrib><description>•KIOPS, a new Krylov subspace algorithm for computing linear combinations of φ-functions is presented.•KIOPS uses the incomplete orthogonalization procedure and an adaptive strategy to determine the optimal parameters.•Numerical experiments demonstrate that KIOPS outperforms the current state-of-the-art adaptive Krylov algorithm.
This paper presents a new algorithm KIOPS for computing linear combinations of φ-functions that appear in exponential integrators. This algorithm is suitable for large-scale problems in computational physics where little or no information about the spectrum or norm of the Jacobian matrix is known a priori. We first show that such problems can be solved efficiently by computing a single exponential of a modified matrix. Then our approach is to compute an appropriate basis for the Krylov subspace using the incomplete orthogonalization procedure and project the matrix exponential on this subspace. We also present a novel adaptive procedure that significantly reduces the computational complexity of exponential integrators. Our numerical experiments demonstrate that KIOPS outperforms the current state-of-the-art adaptive Krylov algorithm phipm.</description><identifier>ISSN: 0021-9991</identifier><identifier>EISSN: 1090-2716</identifier><identifier>DOI: 10.1016/j.jcp.2018.06.026</identifier><language>eng</language><publisher>Cambridge: Elsevier Inc</publisher><subject>Adaptive algorithms ; Adaptive Krylov subspace methods ; Algorithms ; Computation ; Computational physics ; Exponential integrators ; Incomplete orthogonalization ; Integrators ; Jacobi matrix method ; Jacobian matrix ; Matrix exponential ; Subspaces ; Time integration ; φ-functions</subject><ispartof>Journal of computational physics, 2018-11, Vol.372, p.236-255</ispartof><rights>2018</rights><rights>Copyright Elsevier Science Ltd. Nov 1, 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c368t-8c2323c238e273e69529335c01da7d711c8ebc8414561ed2427439893c8ab8673</citedby><cites>FETCH-LOGICAL-c368t-8c2323c238e273e69529335c01da7d711c8ebc8414561ed2427439893c8ab8673</cites><orcidid>0000-0002-4475-0845</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0021999118304042$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Gaudreault, Stéphane</creatorcontrib><creatorcontrib>Rainwater, Greg</creatorcontrib><creatorcontrib>Tokman, Mayya</creatorcontrib><title>KIOPS: A fast adaptive Krylov subspace solver for exponential integrators</title><title>Journal of computational physics</title><description>•KIOPS, a new Krylov subspace algorithm for computing linear combinations of φ-functions is presented.•KIOPS uses the incomplete orthogonalization procedure and an adaptive strategy to determine the optimal parameters.•Numerical experiments demonstrate that KIOPS outperforms the current state-of-the-art adaptive Krylov algorithm.
This paper presents a new algorithm KIOPS for computing linear combinations of φ-functions that appear in exponential integrators. This algorithm is suitable for large-scale problems in computational physics where little or no information about the spectrum or norm of the Jacobian matrix is known a priori. We first show that such problems can be solved efficiently by computing a single exponential of a modified matrix. Then our approach is to compute an appropriate basis for the Krylov subspace using the incomplete orthogonalization procedure and project the matrix exponential on this subspace. We also present a novel adaptive procedure that significantly reduces the computational complexity of exponential integrators. Our numerical experiments demonstrate that KIOPS outperforms the current state-of-the-art adaptive Krylov algorithm phipm.</description><subject>Adaptive algorithms</subject><subject>Adaptive Krylov subspace methods</subject><subject>Algorithms</subject><subject>Computation</subject><subject>Computational physics</subject><subject>Exponential integrators</subject><subject>Incomplete orthogonalization</subject><subject>Integrators</subject><subject>Jacobi matrix method</subject><subject>Jacobian matrix</subject><subject>Matrix exponential</subject><subject>Subspaces</subject><subject>Time integration</subject><subject>φ-functions</subject><issn>0021-9991</issn><issn>1090-2716</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kMtOwzAQRS0EEqXwAewssU7w2Iljw6pCPKpWKhKwtlxnghKFONhpRP-eVGXNZmZzz53RIeQaWAoM5G2TNq5POQOVMpkyLk_IDJhmCS9AnpIZYxwSrTWck4sYG8aYyjM1I8vVcvP6dkcXtLJxoLa0_VCPSFdh3_qRxt029tYhjb4dMdDKB4o_ve-wG2rb0rob8DPYwYd4Sc4q20a8-ttz8vH0-P7wkqw3z8uHxTpxQqohUY4LLqahkBcCpc65FiJ3DEpblAWAU7h1KoMsl4Alz3iRCa20cMpulSzEnNwce_vgv3cYB9P4Xeimk4YDSMlFoeWUgmPKBR9jwMr0of6yYW-AmYMx05jJmDkYM0yaydjE3B8ZnN4fawwmuho7h2Ud0A2m9PU_9C8dwHHc</recordid><startdate>20181101</startdate><enddate>20181101</enddate><creator>Gaudreault, Stéphane</creator><creator>Rainwater, Greg</creator><creator>Tokman, Mayya</creator><general>Elsevier Inc</general><general>Elsevier Science Ltd</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-4475-0845</orcidid></search><sort><creationdate>20181101</creationdate><title>KIOPS: A fast adaptive Krylov subspace solver for exponential integrators</title><author>Gaudreault, Stéphane ; Rainwater, Greg ; Tokman, Mayya</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c368t-8c2323c238e273e69529335c01da7d711c8ebc8414561ed2427439893c8ab8673</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Adaptive algorithms</topic><topic>Adaptive Krylov subspace methods</topic><topic>Algorithms</topic><topic>Computation</topic><topic>Computational physics</topic><topic>Exponential integrators</topic><topic>Incomplete orthogonalization</topic><topic>Integrators</topic><topic>Jacobi matrix method</topic><topic>Jacobian matrix</topic><topic>Matrix exponential</topic><topic>Subspaces</topic><topic>Time integration</topic><topic>φ-functions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gaudreault, Stéphane</creatorcontrib><creatorcontrib>Rainwater, Greg</creatorcontrib><creatorcontrib>Tokman, Mayya</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of computational physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gaudreault, Stéphane</au><au>Rainwater, Greg</au><au>Tokman, Mayya</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>KIOPS: A fast adaptive Krylov subspace solver for exponential integrators</atitle><jtitle>Journal of computational physics</jtitle><date>2018-11-01</date><risdate>2018</risdate><volume>372</volume><spage>236</spage><epage>255</epage><pages>236-255</pages><issn>0021-9991</issn><eissn>1090-2716</eissn><abstract>•KIOPS, a new Krylov subspace algorithm for computing linear combinations of φ-functions is presented.•KIOPS uses the incomplete orthogonalization procedure and an adaptive strategy to determine the optimal parameters.•Numerical experiments demonstrate that KIOPS outperforms the current state-of-the-art adaptive Krylov algorithm.
This paper presents a new algorithm KIOPS for computing linear combinations of φ-functions that appear in exponential integrators. This algorithm is suitable for large-scale problems in computational physics where little or no information about the spectrum or norm of the Jacobian matrix is known a priori. We first show that such problems can be solved efficiently by computing a single exponential of a modified matrix. Then our approach is to compute an appropriate basis for the Krylov subspace using the incomplete orthogonalization procedure and project the matrix exponential on this subspace. We also present a novel adaptive procedure that significantly reduces the computational complexity of exponential integrators. Our numerical experiments demonstrate that KIOPS outperforms the current state-of-the-art adaptive Krylov algorithm phipm.</abstract><cop>Cambridge</cop><pub>Elsevier Inc</pub><doi>10.1016/j.jcp.2018.06.026</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0002-4475-0845</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9991 |
ispartof | Journal of computational physics, 2018-11, Vol.372, p.236-255 |
issn | 0021-9991 1090-2716 |
language | eng |
recordid | cdi_proquest_journals_2116623796 |
source | Elsevier ScienceDirect Journals |
subjects | Adaptive algorithms Adaptive Krylov subspace methods Algorithms Computation Computational physics Exponential integrators Incomplete orthogonalization Integrators Jacobi matrix method Jacobian matrix Matrix exponential Subspaces Time integration φ-functions |
title | KIOPS: A fast adaptive Krylov subspace solver for exponential integrators |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T16%3A08%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=KIOPS:%20A%20fast%20adaptive%20Krylov%20subspace%20solver%20for%20exponential%20integrators&rft.jtitle=Journal%20of%20computational%20physics&rft.au=Gaudreault,%20St%C3%A9phane&rft.date=2018-11-01&rft.volume=372&rft.spage=236&rft.epage=255&rft.pages=236-255&rft.issn=0021-9991&rft.eissn=1090-2716&rft_id=info:doi/10.1016/j.jcp.2018.06.026&rft_dat=%3Cproquest_cross%3E2116623796%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2116623796&rft_id=info:pmid/&rft_els_id=S0021999118304042&rfr_iscdi=true |