KIOPS: A fast adaptive Krylov subspace solver for exponential integrators

•KIOPS, a new Krylov subspace algorithm for computing linear combinations of φ-functions is presented.•KIOPS uses the incomplete orthogonalization procedure and an adaptive strategy to determine the optimal parameters.•Numerical experiments demonstrate that KIOPS outperforms the current state-of-the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of computational physics 2018-11, Vol.372, p.236-255
Hauptverfasser: Gaudreault, Stéphane, Rainwater, Greg, Tokman, Mayya
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 255
container_issue
container_start_page 236
container_title Journal of computational physics
container_volume 372
creator Gaudreault, Stéphane
Rainwater, Greg
Tokman, Mayya
description •KIOPS, a new Krylov subspace algorithm for computing linear combinations of φ-functions is presented.•KIOPS uses the incomplete orthogonalization procedure and an adaptive strategy to determine the optimal parameters.•Numerical experiments demonstrate that KIOPS outperforms the current state-of-the-art adaptive Krylov algorithm. This paper presents a new algorithm KIOPS for computing linear combinations of φ-functions that appear in exponential integrators. This algorithm is suitable for large-scale problems in computational physics where little or no information about the spectrum or norm of the Jacobian matrix is known a priori. We first show that such problems can be solved efficiently by computing a single exponential of a modified matrix. Then our approach is to compute an appropriate basis for the Krylov subspace using the incomplete orthogonalization procedure and project the matrix exponential on this subspace. We also present a novel adaptive procedure that significantly reduces the computational complexity of exponential integrators. Our numerical experiments demonstrate that KIOPS outperforms the current state-of-the-art adaptive Krylov algorithm phipm.
doi_str_mv 10.1016/j.jcp.2018.06.026
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2116623796</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021999118304042</els_id><sourcerecordid>2116623796</sourcerecordid><originalsourceid>FETCH-LOGICAL-c368t-8c2323c238e273e69529335c01da7d711c8ebc8414561ed2427439893c8ab8673</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EEqXwAewssU7w2Iljw6pCPKpWKhKwtlxnghKFONhpRP-eVGXNZmZzz53RIeQaWAoM5G2TNq5POQOVMpkyLk_IDJhmCS9AnpIZYxwSrTWck4sYG8aYyjM1I8vVcvP6dkcXtLJxoLa0_VCPSFdh3_qRxt029tYhjb4dMdDKB4o_ve-wG2rb0rob8DPYwYd4Sc4q20a8-ttz8vH0-P7wkqw3z8uHxTpxQqohUY4LLqahkBcCpc65FiJ3DEpblAWAU7h1KoMsl4Alz3iRCa20cMpulSzEnNwce_vgv3cYB9P4Xeimk4YDSMlFoeWUgmPKBR9jwMr0of6yYW-AmYMx05jJmDkYM0yaydjE3B8ZnN4fawwmuho7h2Ud0A2m9PU_9C8dwHHc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2116623796</pqid></control><display><type>article</type><title>KIOPS: A fast adaptive Krylov subspace solver for exponential integrators</title><source>Elsevier ScienceDirect Journals</source><creator>Gaudreault, Stéphane ; Rainwater, Greg ; Tokman, Mayya</creator><creatorcontrib>Gaudreault, Stéphane ; Rainwater, Greg ; Tokman, Mayya</creatorcontrib><description>•KIOPS, a new Krylov subspace algorithm for computing linear combinations of φ-functions is presented.•KIOPS uses the incomplete orthogonalization procedure and an adaptive strategy to determine the optimal parameters.•Numerical experiments demonstrate that KIOPS outperforms the current state-of-the-art adaptive Krylov algorithm. This paper presents a new algorithm KIOPS for computing linear combinations of φ-functions that appear in exponential integrators. This algorithm is suitable for large-scale problems in computational physics where little or no information about the spectrum or norm of the Jacobian matrix is known a priori. We first show that such problems can be solved efficiently by computing a single exponential of a modified matrix. Then our approach is to compute an appropriate basis for the Krylov subspace using the incomplete orthogonalization procedure and project the matrix exponential on this subspace. We also present a novel adaptive procedure that significantly reduces the computational complexity of exponential integrators. Our numerical experiments demonstrate that KIOPS outperforms the current state-of-the-art adaptive Krylov algorithm phipm.</description><identifier>ISSN: 0021-9991</identifier><identifier>EISSN: 1090-2716</identifier><identifier>DOI: 10.1016/j.jcp.2018.06.026</identifier><language>eng</language><publisher>Cambridge: Elsevier Inc</publisher><subject>Adaptive algorithms ; Adaptive Krylov subspace methods ; Algorithms ; Computation ; Computational physics ; Exponential integrators ; Incomplete orthogonalization ; Integrators ; Jacobi matrix method ; Jacobian matrix ; Matrix exponential ; Subspaces ; Time integration ; φ-functions</subject><ispartof>Journal of computational physics, 2018-11, Vol.372, p.236-255</ispartof><rights>2018</rights><rights>Copyright Elsevier Science Ltd. Nov 1, 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c368t-8c2323c238e273e69529335c01da7d711c8ebc8414561ed2427439893c8ab8673</citedby><cites>FETCH-LOGICAL-c368t-8c2323c238e273e69529335c01da7d711c8ebc8414561ed2427439893c8ab8673</cites><orcidid>0000-0002-4475-0845</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0021999118304042$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Gaudreault, Stéphane</creatorcontrib><creatorcontrib>Rainwater, Greg</creatorcontrib><creatorcontrib>Tokman, Mayya</creatorcontrib><title>KIOPS: A fast adaptive Krylov subspace solver for exponential integrators</title><title>Journal of computational physics</title><description>•KIOPS, a new Krylov subspace algorithm for computing linear combinations of φ-functions is presented.•KIOPS uses the incomplete orthogonalization procedure and an adaptive strategy to determine the optimal parameters.•Numerical experiments demonstrate that KIOPS outperforms the current state-of-the-art adaptive Krylov algorithm. This paper presents a new algorithm KIOPS for computing linear combinations of φ-functions that appear in exponential integrators. This algorithm is suitable for large-scale problems in computational physics where little or no information about the spectrum or norm of the Jacobian matrix is known a priori. We first show that such problems can be solved efficiently by computing a single exponential of a modified matrix. Then our approach is to compute an appropriate basis for the Krylov subspace using the incomplete orthogonalization procedure and project the matrix exponential on this subspace. We also present a novel adaptive procedure that significantly reduces the computational complexity of exponential integrators. Our numerical experiments demonstrate that KIOPS outperforms the current state-of-the-art adaptive Krylov algorithm phipm.</description><subject>Adaptive algorithms</subject><subject>Adaptive Krylov subspace methods</subject><subject>Algorithms</subject><subject>Computation</subject><subject>Computational physics</subject><subject>Exponential integrators</subject><subject>Incomplete orthogonalization</subject><subject>Integrators</subject><subject>Jacobi matrix method</subject><subject>Jacobian matrix</subject><subject>Matrix exponential</subject><subject>Subspaces</subject><subject>Time integration</subject><subject>φ-functions</subject><issn>0021-9991</issn><issn>1090-2716</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kMtOwzAQRS0EEqXwAewssU7w2Iljw6pCPKpWKhKwtlxnghKFONhpRP-eVGXNZmZzz53RIeQaWAoM5G2TNq5POQOVMpkyLk_IDJhmCS9AnpIZYxwSrTWck4sYG8aYyjM1I8vVcvP6dkcXtLJxoLa0_VCPSFdh3_qRxt029tYhjb4dMdDKB4o_ve-wG2rb0rob8DPYwYd4Sc4q20a8-ttz8vH0-P7wkqw3z8uHxTpxQqohUY4LLqahkBcCpc65FiJ3DEpblAWAU7h1KoMsl4Alz3iRCa20cMpulSzEnNwce_vgv3cYB9P4Xeimk4YDSMlFoeWUgmPKBR9jwMr0of6yYW-AmYMx05jJmDkYM0yaydjE3B8ZnN4fawwmuho7h2Ud0A2m9PU_9C8dwHHc</recordid><startdate>20181101</startdate><enddate>20181101</enddate><creator>Gaudreault, Stéphane</creator><creator>Rainwater, Greg</creator><creator>Tokman, Mayya</creator><general>Elsevier Inc</general><general>Elsevier Science Ltd</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-4475-0845</orcidid></search><sort><creationdate>20181101</creationdate><title>KIOPS: A fast adaptive Krylov subspace solver for exponential integrators</title><author>Gaudreault, Stéphane ; Rainwater, Greg ; Tokman, Mayya</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c368t-8c2323c238e273e69529335c01da7d711c8ebc8414561ed2427439893c8ab8673</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Adaptive algorithms</topic><topic>Adaptive Krylov subspace methods</topic><topic>Algorithms</topic><topic>Computation</topic><topic>Computational physics</topic><topic>Exponential integrators</topic><topic>Incomplete orthogonalization</topic><topic>Integrators</topic><topic>Jacobi matrix method</topic><topic>Jacobian matrix</topic><topic>Matrix exponential</topic><topic>Subspaces</topic><topic>Time integration</topic><topic>φ-functions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gaudreault, Stéphane</creatorcontrib><creatorcontrib>Rainwater, Greg</creatorcontrib><creatorcontrib>Tokman, Mayya</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of computational physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gaudreault, Stéphane</au><au>Rainwater, Greg</au><au>Tokman, Mayya</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>KIOPS: A fast adaptive Krylov subspace solver for exponential integrators</atitle><jtitle>Journal of computational physics</jtitle><date>2018-11-01</date><risdate>2018</risdate><volume>372</volume><spage>236</spage><epage>255</epage><pages>236-255</pages><issn>0021-9991</issn><eissn>1090-2716</eissn><abstract>•KIOPS, a new Krylov subspace algorithm for computing linear combinations of φ-functions is presented.•KIOPS uses the incomplete orthogonalization procedure and an adaptive strategy to determine the optimal parameters.•Numerical experiments demonstrate that KIOPS outperforms the current state-of-the-art adaptive Krylov algorithm. This paper presents a new algorithm KIOPS for computing linear combinations of φ-functions that appear in exponential integrators. This algorithm is suitable for large-scale problems in computational physics where little or no information about the spectrum or norm of the Jacobian matrix is known a priori. We first show that such problems can be solved efficiently by computing a single exponential of a modified matrix. Then our approach is to compute an appropriate basis for the Krylov subspace using the incomplete orthogonalization procedure and project the matrix exponential on this subspace. We also present a novel adaptive procedure that significantly reduces the computational complexity of exponential integrators. Our numerical experiments demonstrate that KIOPS outperforms the current state-of-the-art adaptive Krylov algorithm phipm.</abstract><cop>Cambridge</cop><pub>Elsevier Inc</pub><doi>10.1016/j.jcp.2018.06.026</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0002-4475-0845</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9991
ispartof Journal of computational physics, 2018-11, Vol.372, p.236-255
issn 0021-9991
1090-2716
language eng
recordid cdi_proquest_journals_2116623796
source Elsevier ScienceDirect Journals
subjects Adaptive algorithms
Adaptive Krylov subspace methods
Algorithms
Computation
Computational physics
Exponential integrators
Incomplete orthogonalization
Integrators
Jacobi matrix method
Jacobian matrix
Matrix exponential
Subspaces
Time integration
φ-functions
title KIOPS: A fast adaptive Krylov subspace solver for exponential integrators
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T16%3A08%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=KIOPS:%20A%20fast%20adaptive%20Krylov%20subspace%20solver%20for%20exponential%20integrators&rft.jtitle=Journal%20of%20computational%20physics&rft.au=Gaudreault,%20St%C3%A9phane&rft.date=2018-11-01&rft.volume=372&rft.spage=236&rft.epage=255&rft.pages=236-255&rft.issn=0021-9991&rft.eissn=1090-2716&rft_id=info:doi/10.1016/j.jcp.2018.06.026&rft_dat=%3Cproquest_cross%3E2116623796%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2116623796&rft_id=info:pmid/&rft_els_id=S0021999118304042&rfr_iscdi=true