On the Asymptotic Behavior of Solutions to Two-Term Differential Equations with Singular Coefficients

Asymptotic formulas as x →∞ are obtained for a fundamental system of solutions to equations of the form l ( y ) : = ( − 1 ) n ( p ( x ) y ( n ) ) ( n ) + q ( x ) y = λ y , x ∈ [ 1 , ∞ ) , where p is a locally integrable function representable as p ( x ) = ( 1 + r ( x ) ) − 1 , r ∈ L 1 ( 1 , ∞ ) , an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical Notes 2018-07, Vol.104 (1-2), p.244-252
Hauptverfasser: Konechnaya, N. N., Mirzoev, K. A., Shkalikov, A. A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 252
container_issue 1-2
container_start_page 244
container_title Mathematical Notes
container_volume 104
creator Konechnaya, N. N.
Mirzoev, K. A.
Shkalikov, A. A.
description Asymptotic formulas as x →∞ are obtained for a fundamental system of solutions to equations of the form l ( y ) : = ( − 1 ) n ( p ( x ) y ( n ) ) ( n ) + q ( x ) y = λ y , x ∈ [ 1 , ∞ ) , where p is a locally integrable function representable as p ( x ) = ( 1 + r ( x ) ) − 1 , r ∈ L 1 ( 1 , ∞ ) , and q is a distribution such that q = σ ( k ) for a fixed integer k , 0 ≤ k ≤ n , and a function σ satisfying the conditions σ ∈ L 1 ( 1 , ∞ ) i f k < n , | σ | ( 1 + | r | ) ( 1 + | σ | ) ∈ L 1 ( 1 , ∞ ) i f k = n . Similar results are obtained for functions representable as p ( x ) = x 2 n + v ( 1 + r ( x ) ) − 1 , q = σ ( k ) , σ ( x ) = x k + v ( β + s ( x ) ) , for fixed k , 0 ≤ k ≤ n , where the functions r and s satisfy certain integral decay conditions. Theorems on the deficiency index of the minimal symmetric operator generated by the differential expression l ( y ) (for real functions p and q ) and theorems on the spectra of the corresponding self-adjoint extensions are also obtained. Complete proofs are given only for the case n = 1.
doi_str_mv 10.1134/S0001434618070258
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2116621797</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2116621797</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-861276362c0dc701c3e8455469b9e6196323292ff09ef64a89b3df3a1f378e653</originalsourceid><addsrcrecordid>eNp1kE9LAzEQxYMoWKsfwFvA82om2U2yx1rrHyj00Hpe0m3Spmw3bZK19NubsoIH8TQM7_feMA-heyCPACx_mhNCIGc5B0kEoYW8QAMoBMukFPwSDc5ydtav0U0I27QBBzJAetbiuNF4FE67fXTR1vhZb9SXdR47g-eu6aJ1bcDR4cXRZQvtd_jFGqO9bqNVDZ4cOtUjRxs3eG7bddcoj8dOG2Nrm7Bwi66MaoK--5lD9Pk6WYzfs-ns7WM8mmY1Ax4zyYEKzjityaoWBGqmZV4UOS-XpeZQckYZLakxpNSG50qWS7YyTIFhQmpesCF66HP33h06HWK1dZ1v08mKpoc5BVGKREFP1d6F4LWp9t7ulD9VQKpzm9WfNpOH9p6Q2Hat_W_y_6ZvBHR1ug</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2116621797</pqid></control><display><type>article</type><title>On the Asymptotic Behavior of Solutions to Two-Term Differential Equations with Singular Coefficients</title><source>SpringerLink Journals - AutoHoldings</source><creator>Konechnaya, N. N. ; Mirzoev, K. A. ; Shkalikov, A. A.</creator><creatorcontrib>Konechnaya, N. N. ; Mirzoev, K. A. ; Shkalikov, A. A.</creatorcontrib><description>Asymptotic formulas as x →∞ are obtained for a fundamental system of solutions to equations of the form l ( y ) : = ( − 1 ) n ( p ( x ) y ( n ) ) ( n ) + q ( x ) y = λ y , x ∈ [ 1 , ∞ ) , where p is a locally integrable function representable as p ( x ) = ( 1 + r ( x ) ) − 1 , r ∈ L 1 ( 1 , ∞ ) , and q is a distribution such that q = σ ( k ) for a fixed integer k , 0 ≤ k ≤ n , and a function σ satisfying the conditions σ ∈ L 1 ( 1 , ∞ ) i f k &lt; n , | σ | ( 1 + | r | ) ( 1 + | σ | ) ∈ L 1 ( 1 , ∞ ) i f k = n . Similar results are obtained for functions representable as p ( x ) = x 2 n + v ( 1 + r ( x ) ) − 1 , q = σ ( k ) , σ ( x ) = x k + v ( β + s ( x ) ) , for fixed k , 0 ≤ k ≤ n , where the functions r and s satisfy certain integral decay conditions. Theorems on the deficiency index of the minimal symmetric operator generated by the differential expression l ( y ) (for real functions p and q ) and theorems on the spectra of the corresponding self-adjoint extensions are also obtained. Complete proofs are given only for the case n = 1.</description><identifier>ISSN: 0001-4346</identifier><identifier>ISSN: 1067-9073</identifier><identifier>EISSN: 1573-8876</identifier><identifier>DOI: 10.1134/S0001434618070258</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Asymptotic properties ; Differential equations ; Mathematical analysis ; Mathematical functions ; Mathematics ; Mathematics and Statistics ; Operators (mathematics) ; Theorems</subject><ispartof>Mathematical Notes, 2018-07, Vol.104 (1-2), p.244-252</ispartof><rights>Pleiades Publishing, Ltd. 2018</rights><rights>Copyright Springer Science &amp; Business Media 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-861276362c0dc701c3e8455469b9e6196323292ff09ef64a89b3df3a1f378e653</citedby><cites>FETCH-LOGICAL-c316t-861276362c0dc701c3e8455469b9e6196323292ff09ef64a89b3df3a1f378e653</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S0001434618070258$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S0001434618070258$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Konechnaya, N. N.</creatorcontrib><creatorcontrib>Mirzoev, K. A.</creatorcontrib><creatorcontrib>Shkalikov, A. A.</creatorcontrib><title>On the Asymptotic Behavior of Solutions to Two-Term Differential Equations with Singular Coefficients</title><title>Mathematical Notes</title><addtitle>Math Notes</addtitle><description>Asymptotic formulas as x →∞ are obtained for a fundamental system of solutions to equations of the form l ( y ) : = ( − 1 ) n ( p ( x ) y ( n ) ) ( n ) + q ( x ) y = λ y , x ∈ [ 1 , ∞ ) , where p is a locally integrable function representable as p ( x ) = ( 1 + r ( x ) ) − 1 , r ∈ L 1 ( 1 , ∞ ) , and q is a distribution such that q = σ ( k ) for a fixed integer k , 0 ≤ k ≤ n , and a function σ satisfying the conditions σ ∈ L 1 ( 1 , ∞ ) i f k &lt; n , | σ | ( 1 + | r | ) ( 1 + | σ | ) ∈ L 1 ( 1 , ∞ ) i f k = n . Similar results are obtained for functions representable as p ( x ) = x 2 n + v ( 1 + r ( x ) ) − 1 , q = σ ( k ) , σ ( x ) = x k + v ( β + s ( x ) ) , for fixed k , 0 ≤ k ≤ n , where the functions r and s satisfy certain integral decay conditions. Theorems on the deficiency index of the minimal symmetric operator generated by the differential expression l ( y ) (for real functions p and q ) and theorems on the spectra of the corresponding self-adjoint extensions are also obtained. Complete proofs are given only for the case n = 1.</description><subject>Asymptotic properties</subject><subject>Differential equations</subject><subject>Mathematical analysis</subject><subject>Mathematical functions</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Operators (mathematics)</subject><subject>Theorems</subject><issn>0001-4346</issn><issn>1067-9073</issn><issn>1573-8876</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kE9LAzEQxYMoWKsfwFvA82om2U2yx1rrHyj00Hpe0m3Spmw3bZK19NubsoIH8TQM7_feMA-heyCPACx_mhNCIGc5B0kEoYW8QAMoBMukFPwSDc5ydtav0U0I27QBBzJAetbiuNF4FE67fXTR1vhZb9SXdR47g-eu6aJ1bcDR4cXRZQvtd_jFGqO9bqNVDZ4cOtUjRxs3eG7bddcoj8dOG2Nrm7Bwi66MaoK--5lD9Pk6WYzfs-ns7WM8mmY1Ax4zyYEKzjityaoWBGqmZV4UOS-XpeZQckYZLakxpNSG50qWS7YyTIFhQmpesCF66HP33h06HWK1dZ1v08mKpoc5BVGKREFP1d6F4LWp9t7ulD9VQKpzm9WfNpOH9p6Q2Hat_W_y_6ZvBHR1ug</recordid><startdate>20180701</startdate><enddate>20180701</enddate><creator>Konechnaya, N. N.</creator><creator>Mirzoev, K. A.</creator><creator>Shkalikov, A. A.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20180701</creationdate><title>On the Asymptotic Behavior of Solutions to Two-Term Differential Equations with Singular Coefficients</title><author>Konechnaya, N. N. ; Mirzoev, K. A. ; Shkalikov, A. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-861276362c0dc701c3e8455469b9e6196323292ff09ef64a89b3df3a1f378e653</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Asymptotic properties</topic><topic>Differential equations</topic><topic>Mathematical analysis</topic><topic>Mathematical functions</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Operators (mathematics)</topic><topic>Theorems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Konechnaya, N. N.</creatorcontrib><creatorcontrib>Mirzoev, K. A.</creatorcontrib><creatorcontrib>Shkalikov, A. A.</creatorcontrib><collection>CrossRef</collection><jtitle>Mathematical Notes</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Konechnaya, N. N.</au><au>Mirzoev, K. A.</au><au>Shkalikov, A. A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the Asymptotic Behavior of Solutions to Two-Term Differential Equations with Singular Coefficients</atitle><jtitle>Mathematical Notes</jtitle><stitle>Math Notes</stitle><date>2018-07-01</date><risdate>2018</risdate><volume>104</volume><issue>1-2</issue><spage>244</spage><epage>252</epage><pages>244-252</pages><issn>0001-4346</issn><issn>1067-9073</issn><eissn>1573-8876</eissn><abstract>Asymptotic formulas as x →∞ are obtained for a fundamental system of solutions to equations of the form l ( y ) : = ( − 1 ) n ( p ( x ) y ( n ) ) ( n ) + q ( x ) y = λ y , x ∈ [ 1 , ∞ ) , where p is a locally integrable function representable as p ( x ) = ( 1 + r ( x ) ) − 1 , r ∈ L 1 ( 1 , ∞ ) , and q is a distribution such that q = σ ( k ) for a fixed integer k , 0 ≤ k ≤ n , and a function σ satisfying the conditions σ ∈ L 1 ( 1 , ∞ ) i f k &lt; n , | σ | ( 1 + | r | ) ( 1 + | σ | ) ∈ L 1 ( 1 , ∞ ) i f k = n . Similar results are obtained for functions representable as p ( x ) = x 2 n + v ( 1 + r ( x ) ) − 1 , q = σ ( k ) , σ ( x ) = x k + v ( β + s ( x ) ) , for fixed k , 0 ≤ k ≤ n , where the functions r and s satisfy certain integral decay conditions. Theorems on the deficiency index of the minimal symmetric operator generated by the differential expression l ( y ) (for real functions p and q ) and theorems on the spectra of the corresponding self-adjoint extensions are also obtained. Complete proofs are given only for the case n = 1.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S0001434618070258</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0001-4346
ispartof Mathematical Notes, 2018-07, Vol.104 (1-2), p.244-252
issn 0001-4346
1067-9073
1573-8876
language eng
recordid cdi_proquest_journals_2116621797
source SpringerLink Journals - AutoHoldings
subjects Asymptotic properties
Differential equations
Mathematical analysis
Mathematical functions
Mathematics
Mathematics and Statistics
Operators (mathematics)
Theorems
title On the Asymptotic Behavior of Solutions to Two-Term Differential Equations with Singular Coefficients
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T00%3A25%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20Asymptotic%20Behavior%20of%20Solutions%20to%20Two-Term%20Differential%20Equations%20with%20Singular%20Coefficients&rft.jtitle=Mathematical%20Notes&rft.au=Konechnaya,%20N.%20N.&rft.date=2018-07-01&rft.volume=104&rft.issue=1-2&rft.spage=244&rft.epage=252&rft.pages=244-252&rft.issn=0001-4346&rft.eissn=1573-8876&rft_id=info:doi/10.1134/S0001434618070258&rft_dat=%3Cproquest_cross%3E2116621797%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2116621797&rft_id=info:pmid/&rfr_iscdi=true