On the Asymptotic Behavior of Solutions to Two-Term Differential Equations with Singular Coefficients
Asymptotic formulas as x →∞ are obtained for a fundamental system of solutions to equations of the form l ( y ) : = ( − 1 ) n ( p ( x ) y ( n ) ) ( n ) + q ( x ) y = λ y , x ∈ [ 1 , ∞ ) , where p is a locally integrable function representable as p ( x ) = ( 1 + r ( x ) ) − 1 , r ∈ L 1 ( 1 , ∞ ) , an...
Gespeichert in:
Veröffentlicht in: | Mathematical Notes 2018-07, Vol.104 (1-2), p.244-252 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Asymptotic formulas as
x
→∞ are obtained for a fundamental system of solutions to equations of the form
l
(
y
)
:
=
(
−
1
)
n
(
p
(
x
)
y
(
n
)
)
(
n
)
+
q
(
x
)
y
=
λ
y
,
x
∈
[
1
,
∞
)
, where p is a locally integrable function representable as
p
(
x
)
=
(
1
+
r
(
x
)
)
−
1
,
r
∈
L
1
(
1
,
∞
)
, and
q
is a distribution such that
q
=
σ
(
k
)
for a fixed integer
k
, 0 ≤
k
≤
n
, and a function σ satisfying the conditions
σ
∈
L
1
(
1
,
∞
)
i
f
k
<
n
,
|
σ
|
(
1
+
|
r
|
)
(
1
+
|
σ
|
)
∈
L
1
(
1
,
∞
)
i
f
k
=
n
. Similar results are obtained for functions representable as
p
(
x
)
=
x
2
n
+
v
(
1
+
r
(
x
)
)
−
1
,
q
=
σ
(
k
)
,
σ
(
x
)
=
x
k
+
v
(
β
+
s
(
x
)
)
, for fixed
k
, 0 ≤
k
≤
n
, where the functions
r
and s satisfy certain integral decay conditions. Theorems on the deficiency index of the minimal symmetric operator generated by the differential expression
l
(
y
) (for real functions
p
and
q
) and theorems on the spectra of the corresponding self-adjoint extensions are also obtained. Complete proofs are given only for the case
n
= 1. |
---|---|
ISSN: | 0001-4346 1067-9073 1573-8876 |
DOI: | 10.1134/S0001434618070258 |