A computational approach to first-passage-time problems for Gauss–Markov processes

A new computationally simple, speedy and accurate method is proposed to construct first-passage-time probability density functions for Gauss–Markov processes through time-dependent boundaries, both for fixed and for random initial states. Some applications to Brownian motion and to the Brownian brid...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advances in applied probability 2001-06, Vol.33 (2), p.453-482
Hauptverfasser: Di Nardo, E., Nobile, A. G., Pirozzi, E., Ricciardi, L. M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 482
container_issue 2
container_start_page 453
container_title Advances in applied probability
container_volume 33
creator Di Nardo, E.
Nobile, A. G.
Pirozzi, E.
Ricciardi, L. M.
description A new computationally simple, speedy and accurate method is proposed to construct first-passage-time probability density functions for Gauss–Markov processes through time-dependent boundaries, both for fixed and for random initial states. Some applications to Brownian motion and to the Brownian bridge are then provided together with a comparison with some computational results by Durbin and by Daniels. Various closed-form results are also obtained for classes of boundaries that are intimately related to certain symmetries of the processes considered.
doi_str_mv 10.1017/S0001867800010892
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_211653056</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_S0001867800010892</cupid><jstor_id>1428263</jstor_id><sourcerecordid>1428263</sourcerecordid><originalsourceid>FETCH-LOGICAL-c337t-e438653a37eb462d6d1a067680b5d7308d73ef89f56fa8ceb9e5a9bb247e4ed93</originalsourceid><addsrcrecordid>eNp1UM1Kw0AQXkTBWn0AwUPwHt3NJrubYylahYoH6zlMkklNbdy4sxW8-Q6-oU_ihhZ6EC8zzHx_zDB2LviV4EJfP3HOhVHaDJ2bPDlgI5HqLFZcpYdsNKzjAT9mJ0SrMMrAHbHFJKps1288-Na-wTqCvncWqpfI26hpHfm4ByJYYuzbDqMAlmvsKGqsi2awIfr5-n4A92o_BqxCIqRTdtTAmvBs18fs-fZmMb2L54-z--lkHldSah9jKo3KJEiNZaqSWtUCuNLK8DKrteQmFGxM3mSqAVNhmWMGeVkmqcYU61yO2eXWNyS_b5B8sbIbF66gIhEiWPNMBZLYkipniRw2Re_aDtxnIXgx_K7487ugudhqVuSt2wvSxCRKBljuLKErXVsvcR_8v-kv7Hd7hw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>211653056</pqid></control><display><type>article</type><title>A computational approach to first-passage-time problems for Gauss–Markov processes</title><source>JSTOR</source><source>JSTOR Mathematics &amp; Statistics</source><creator>Di Nardo, E. ; Nobile, A. G. ; Pirozzi, E. ; Ricciardi, L. M.</creator><creatorcontrib>Di Nardo, E. ; Nobile, A. G. ; Pirozzi, E. ; Ricciardi, L. M.</creatorcontrib><description>A new computationally simple, speedy and accurate method is proposed to construct first-passage-time probability density functions for Gauss–Markov processes through time-dependent boundaries, both for fixed and for random initial states. Some applications to Brownian motion and to the Brownian bridge are then provided together with a comparison with some computational results by Durbin and by Daniels. Various closed-form results are also obtained for classes of boundaries that are intimately related to certain symmetries of the processes considered.</description><identifier>ISSN: 0001-8678</identifier><identifier>EISSN: 1475-6064</identifier><identifier>DOI: 10.1017/S0001867800010892</identifier><identifier>CODEN: AAPBBD</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Approximation ; Brownian bridge ; Brownian motion ; Covariance ; Differential equations ; Error rates ; General Applied Probability ; Markov analysis ; Markov processes ; Normal distribution ; Numerical methods ; Probability ; Random variables ; Series expansion ; Studies ; Time series</subject><ispartof>Advances in applied probability, 2001-06, Vol.33 (2), p.453-482</ispartof><rights>Copyright © Applied Probability Trust 2001</rights><rights>Copyright 2001 Applied Probability Trust</rights><rights>Copyright Applied Probability Trust Jun 2001</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c337t-e438653a37eb462d6d1a067680b5d7308d73ef89f56fa8ceb9e5a9bb247e4ed93</citedby><cites>FETCH-LOGICAL-c337t-e438653a37eb462d6d1a067680b5d7308d73ef89f56fa8ceb9e5a9bb247e4ed93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/1428263$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/1428263$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,832,27924,27925,58017,58021,58250,58254</link.rule.ids></links><search><creatorcontrib>Di Nardo, E.</creatorcontrib><creatorcontrib>Nobile, A. G.</creatorcontrib><creatorcontrib>Pirozzi, E.</creatorcontrib><creatorcontrib>Ricciardi, L. M.</creatorcontrib><title>A computational approach to first-passage-time problems for Gauss–Markov processes</title><title>Advances in applied probability</title><addtitle>Advances in Applied Probability</addtitle><description>A new computationally simple, speedy and accurate method is proposed to construct first-passage-time probability density functions for Gauss–Markov processes through time-dependent boundaries, both for fixed and for random initial states. Some applications to Brownian motion and to the Brownian bridge are then provided together with a comparison with some computational results by Durbin and by Daniels. Various closed-form results are also obtained for classes of boundaries that are intimately related to certain symmetries of the processes considered.</description><subject>Approximation</subject><subject>Brownian bridge</subject><subject>Brownian motion</subject><subject>Covariance</subject><subject>Differential equations</subject><subject>Error rates</subject><subject>General Applied Probability</subject><subject>Markov analysis</subject><subject>Markov processes</subject><subject>Normal distribution</subject><subject>Numerical methods</subject><subject>Probability</subject><subject>Random variables</subject><subject>Series expansion</subject><subject>Studies</subject><subject>Time series</subject><issn>0001-8678</issn><issn>1475-6064</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><recordid>eNp1UM1Kw0AQXkTBWn0AwUPwHt3NJrubYylahYoH6zlMkklNbdy4sxW8-Q6-oU_ihhZ6EC8zzHx_zDB2LviV4EJfP3HOhVHaDJ2bPDlgI5HqLFZcpYdsNKzjAT9mJ0SrMMrAHbHFJKps1288-Na-wTqCvncWqpfI26hpHfm4ByJYYuzbDqMAlmvsKGqsi2awIfr5-n4A92o_BqxCIqRTdtTAmvBs18fs-fZmMb2L54-z--lkHldSah9jKo3KJEiNZaqSWtUCuNLK8DKrteQmFGxM3mSqAVNhmWMGeVkmqcYU61yO2eXWNyS_b5B8sbIbF66gIhEiWPNMBZLYkipniRw2Re_aDtxnIXgx_K7487ugudhqVuSt2wvSxCRKBljuLKErXVsvcR_8v-kv7Hd7hw</recordid><startdate>200106</startdate><enddate>200106</enddate><creator>Di Nardo, E.</creator><creator>Nobile, A. G.</creator><creator>Pirozzi, E.</creator><creator>Ricciardi, L. M.</creator><general>Cambridge University Press</general><general>Applied Probability Trust</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>200106</creationdate><title>A computational approach to first-passage-time problems for Gauss–Markov processes</title><author>Di Nardo, E. ; Nobile, A. G. ; Pirozzi, E. ; Ricciardi, L. M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c337t-e438653a37eb462d6d1a067680b5d7308d73ef89f56fa8ceb9e5a9bb247e4ed93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Approximation</topic><topic>Brownian bridge</topic><topic>Brownian motion</topic><topic>Covariance</topic><topic>Differential equations</topic><topic>Error rates</topic><topic>General Applied Probability</topic><topic>Markov analysis</topic><topic>Markov processes</topic><topic>Normal distribution</topic><topic>Numerical methods</topic><topic>Probability</topic><topic>Random variables</topic><topic>Series expansion</topic><topic>Studies</topic><topic>Time series</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Di Nardo, E.</creatorcontrib><creatorcontrib>Nobile, A. G.</creatorcontrib><creatorcontrib>Pirozzi, E.</creatorcontrib><creatorcontrib>Ricciardi, L. M.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Advances in applied probability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Di Nardo, E.</au><au>Nobile, A. G.</au><au>Pirozzi, E.</au><au>Ricciardi, L. M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A computational approach to first-passage-time problems for Gauss–Markov processes</atitle><jtitle>Advances in applied probability</jtitle><addtitle>Advances in Applied Probability</addtitle><date>2001-06</date><risdate>2001</risdate><volume>33</volume><issue>2</issue><spage>453</spage><epage>482</epage><pages>453-482</pages><issn>0001-8678</issn><eissn>1475-6064</eissn><coden>AAPBBD</coden><abstract>A new computationally simple, speedy and accurate method is proposed to construct first-passage-time probability density functions for Gauss–Markov processes through time-dependent boundaries, both for fixed and for random initial states. Some applications to Brownian motion and to the Brownian bridge are then provided together with a comparison with some computational results by Durbin and by Daniels. Various closed-form results are also obtained for classes of boundaries that are intimately related to certain symmetries of the processes considered.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/S0001867800010892</doi><tpages>30</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0001-8678
ispartof Advances in applied probability, 2001-06, Vol.33 (2), p.453-482
issn 0001-8678
1475-6064
language eng
recordid cdi_proquest_journals_211653056
source JSTOR; JSTOR Mathematics & Statistics
subjects Approximation
Brownian bridge
Brownian motion
Covariance
Differential equations
Error rates
General Applied Probability
Markov analysis
Markov processes
Normal distribution
Numerical methods
Probability
Random variables
Series expansion
Studies
Time series
title A computational approach to first-passage-time problems for Gauss–Markov processes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T16%3A34%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20computational%20approach%20to%20first-passage-time%20problems%20for%20Gauss%E2%80%93Markov%20processes&rft.jtitle=Advances%20in%20applied%20probability&rft.au=Di%20Nardo,%20E.&rft.date=2001-06&rft.volume=33&rft.issue=2&rft.spage=453&rft.epage=482&rft.pages=453-482&rft.issn=0001-8678&rft.eissn=1475-6064&rft.coden=AAPBBD&rft_id=info:doi/10.1017/S0001867800010892&rft_dat=%3Cjstor_proqu%3E1428263%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=211653056&rft_id=info:pmid/&rft_cupid=10_1017_S0001867800010892&rft_jstor_id=1428263&rfr_iscdi=true