A computational approach to first-passage-time problems for Gauss–Markov processes
A new computationally simple, speedy and accurate method is proposed to construct first-passage-time probability density functions for Gauss–Markov processes through time-dependent boundaries, both for fixed and for random initial states. Some applications to Brownian motion and to the Brownian brid...
Gespeichert in:
Veröffentlicht in: | Advances in applied probability 2001-06, Vol.33 (2), p.453-482 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 482 |
---|---|
container_issue | 2 |
container_start_page | 453 |
container_title | Advances in applied probability |
container_volume | 33 |
creator | Di Nardo, E. Nobile, A. G. Pirozzi, E. Ricciardi, L. M. |
description | A new computationally simple, speedy and accurate method is proposed to construct first-passage-time probability density functions for Gauss–Markov processes through time-dependent boundaries, both for fixed and for random initial states. Some applications to Brownian motion and to the Brownian bridge are then provided together with a comparison with some computational results by Durbin and by Daniels. Various closed-form results are also obtained for classes of boundaries that are intimately related to certain symmetries of the processes considered. |
doi_str_mv | 10.1017/S0001867800010892 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_211653056</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_S0001867800010892</cupid><jstor_id>1428263</jstor_id><sourcerecordid>1428263</sourcerecordid><originalsourceid>FETCH-LOGICAL-c337t-e438653a37eb462d6d1a067680b5d7308d73ef89f56fa8ceb9e5a9bb247e4ed93</originalsourceid><addsrcrecordid>eNp1UM1Kw0AQXkTBWn0AwUPwHt3NJrubYylahYoH6zlMkklNbdy4sxW8-Q6-oU_ihhZ6EC8zzHx_zDB2LviV4EJfP3HOhVHaDJ2bPDlgI5HqLFZcpYdsNKzjAT9mJ0SrMMrAHbHFJKps1288-Na-wTqCvncWqpfI26hpHfm4ByJYYuzbDqMAlmvsKGqsi2awIfr5-n4A92o_BqxCIqRTdtTAmvBs18fs-fZmMb2L54-z--lkHldSah9jKo3KJEiNZaqSWtUCuNLK8DKrteQmFGxM3mSqAVNhmWMGeVkmqcYU61yO2eXWNyS_b5B8sbIbF66gIhEiWPNMBZLYkipniRw2Re_aDtxnIXgx_K7487ugudhqVuSt2wvSxCRKBljuLKErXVsvcR_8v-kv7Hd7hw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>211653056</pqid></control><display><type>article</type><title>A computational approach to first-passage-time problems for Gauss–Markov processes</title><source>JSTOR</source><source>JSTOR Mathematics & Statistics</source><creator>Di Nardo, E. ; Nobile, A. G. ; Pirozzi, E. ; Ricciardi, L. M.</creator><creatorcontrib>Di Nardo, E. ; Nobile, A. G. ; Pirozzi, E. ; Ricciardi, L. M.</creatorcontrib><description>A new computationally simple, speedy and accurate method is proposed to construct first-passage-time probability density functions for Gauss–Markov processes through time-dependent boundaries, both for fixed and for random initial states. Some applications to Brownian motion and to the Brownian bridge are then provided together with a comparison with some computational results by Durbin and by Daniels. Various closed-form results are also obtained for classes of boundaries that are intimately related to certain symmetries of the processes considered.</description><identifier>ISSN: 0001-8678</identifier><identifier>EISSN: 1475-6064</identifier><identifier>DOI: 10.1017/S0001867800010892</identifier><identifier>CODEN: AAPBBD</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Approximation ; Brownian bridge ; Brownian motion ; Covariance ; Differential equations ; Error rates ; General Applied Probability ; Markov analysis ; Markov processes ; Normal distribution ; Numerical methods ; Probability ; Random variables ; Series expansion ; Studies ; Time series</subject><ispartof>Advances in applied probability, 2001-06, Vol.33 (2), p.453-482</ispartof><rights>Copyright © Applied Probability Trust 2001</rights><rights>Copyright 2001 Applied Probability Trust</rights><rights>Copyright Applied Probability Trust Jun 2001</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c337t-e438653a37eb462d6d1a067680b5d7308d73ef89f56fa8ceb9e5a9bb247e4ed93</citedby><cites>FETCH-LOGICAL-c337t-e438653a37eb462d6d1a067680b5d7308d73ef89f56fa8ceb9e5a9bb247e4ed93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/1428263$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/1428263$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,832,27924,27925,58017,58021,58250,58254</link.rule.ids></links><search><creatorcontrib>Di Nardo, E.</creatorcontrib><creatorcontrib>Nobile, A. G.</creatorcontrib><creatorcontrib>Pirozzi, E.</creatorcontrib><creatorcontrib>Ricciardi, L. M.</creatorcontrib><title>A computational approach to first-passage-time problems for Gauss–Markov processes</title><title>Advances in applied probability</title><addtitle>Advances in Applied Probability</addtitle><description>A new computationally simple, speedy and accurate method is proposed to construct first-passage-time probability density functions for Gauss–Markov processes through time-dependent boundaries, both for fixed and for random initial states. Some applications to Brownian motion and to the Brownian bridge are then provided together with a comparison with some computational results by Durbin and by Daniels. Various closed-form results are also obtained for classes of boundaries that are intimately related to certain symmetries of the processes considered.</description><subject>Approximation</subject><subject>Brownian bridge</subject><subject>Brownian motion</subject><subject>Covariance</subject><subject>Differential equations</subject><subject>Error rates</subject><subject>General Applied Probability</subject><subject>Markov analysis</subject><subject>Markov processes</subject><subject>Normal distribution</subject><subject>Numerical methods</subject><subject>Probability</subject><subject>Random variables</subject><subject>Series expansion</subject><subject>Studies</subject><subject>Time series</subject><issn>0001-8678</issn><issn>1475-6064</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><recordid>eNp1UM1Kw0AQXkTBWn0AwUPwHt3NJrubYylahYoH6zlMkklNbdy4sxW8-Q6-oU_ihhZ6EC8zzHx_zDB2LviV4EJfP3HOhVHaDJ2bPDlgI5HqLFZcpYdsNKzjAT9mJ0SrMMrAHbHFJKps1288-Na-wTqCvncWqpfI26hpHfm4ByJYYuzbDqMAlmvsKGqsi2awIfr5-n4A92o_BqxCIqRTdtTAmvBs18fs-fZmMb2L54-z--lkHldSah9jKo3KJEiNZaqSWtUCuNLK8DKrteQmFGxM3mSqAVNhmWMGeVkmqcYU61yO2eXWNyS_b5B8sbIbF66gIhEiWPNMBZLYkipniRw2Re_aDtxnIXgx_K7487ugudhqVuSt2wvSxCRKBljuLKErXVsvcR_8v-kv7Hd7hw</recordid><startdate>200106</startdate><enddate>200106</enddate><creator>Di Nardo, E.</creator><creator>Nobile, A. G.</creator><creator>Pirozzi, E.</creator><creator>Ricciardi, L. M.</creator><general>Cambridge University Press</general><general>Applied Probability Trust</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>200106</creationdate><title>A computational approach to first-passage-time problems for Gauss–Markov processes</title><author>Di Nardo, E. ; Nobile, A. G. ; Pirozzi, E. ; Ricciardi, L. M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c337t-e438653a37eb462d6d1a067680b5d7308d73ef89f56fa8ceb9e5a9bb247e4ed93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Approximation</topic><topic>Brownian bridge</topic><topic>Brownian motion</topic><topic>Covariance</topic><topic>Differential equations</topic><topic>Error rates</topic><topic>General Applied Probability</topic><topic>Markov analysis</topic><topic>Markov processes</topic><topic>Normal distribution</topic><topic>Numerical methods</topic><topic>Probability</topic><topic>Random variables</topic><topic>Series expansion</topic><topic>Studies</topic><topic>Time series</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Di Nardo, E.</creatorcontrib><creatorcontrib>Nobile, A. G.</creatorcontrib><creatorcontrib>Pirozzi, E.</creatorcontrib><creatorcontrib>Ricciardi, L. M.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Advances in applied probability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Di Nardo, E.</au><au>Nobile, A. G.</au><au>Pirozzi, E.</au><au>Ricciardi, L. M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A computational approach to first-passage-time problems for Gauss–Markov processes</atitle><jtitle>Advances in applied probability</jtitle><addtitle>Advances in Applied Probability</addtitle><date>2001-06</date><risdate>2001</risdate><volume>33</volume><issue>2</issue><spage>453</spage><epage>482</epage><pages>453-482</pages><issn>0001-8678</issn><eissn>1475-6064</eissn><coden>AAPBBD</coden><abstract>A new computationally simple, speedy and accurate method is proposed to construct first-passage-time probability density functions for Gauss–Markov processes through time-dependent boundaries, both for fixed and for random initial states. Some applications to Brownian motion and to the Brownian bridge are then provided together with a comparison with some computational results by Durbin and by Daniels. Various closed-form results are also obtained for classes of boundaries that are intimately related to certain symmetries of the processes considered.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/S0001867800010892</doi><tpages>30</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0001-8678 |
ispartof | Advances in applied probability, 2001-06, Vol.33 (2), p.453-482 |
issn | 0001-8678 1475-6064 |
language | eng |
recordid | cdi_proquest_journals_211653056 |
source | JSTOR; JSTOR Mathematics & Statistics |
subjects | Approximation Brownian bridge Brownian motion Covariance Differential equations Error rates General Applied Probability Markov analysis Markov processes Normal distribution Numerical methods Probability Random variables Series expansion Studies Time series |
title | A computational approach to first-passage-time problems for Gauss–Markov processes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T16%3A34%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20computational%20approach%20to%20first-passage-time%20problems%20for%20Gauss%E2%80%93Markov%20processes&rft.jtitle=Advances%20in%20applied%20probability&rft.au=Di%20Nardo,%20E.&rft.date=2001-06&rft.volume=33&rft.issue=2&rft.spage=453&rft.epage=482&rft.pages=453-482&rft.issn=0001-8678&rft.eissn=1475-6064&rft.coden=AAPBBD&rft_id=info:doi/10.1017/S0001867800010892&rft_dat=%3Cjstor_proqu%3E1428263%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=211653056&rft_id=info:pmid/&rft_cupid=10_1017_S0001867800010892&rft_jstor_id=1428263&rfr_iscdi=true |