Ramsey Numbers for Partially-Ordered Sets

We present a refinement of Ramsey numbers by considering graphs with a partial ordering on their vertices. This is a natural extension of the ordered Ramsey numbers. We formalize situations in which we can use arbitrary families of partially-ordered sets to form host graphs for Ramsey problems. We e...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Order (Dordrecht) 2018-11, Vol.35 (3), p.557-579
Hauptverfasser: Cox, Christopher, Stolee, Derrick
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 579
container_issue 3
container_start_page 557
container_title Order (Dordrecht)
container_volume 35
creator Cox, Christopher
Stolee, Derrick
description We present a refinement of Ramsey numbers by considering graphs with a partial ordering on their vertices. This is a natural extension of the ordered Ramsey numbers. We formalize situations in which we can use arbitrary families of partially-ordered sets to form host graphs for Ramsey problems. We explore connections to well studied Turán-type problems in partially-ordered sets, particularly those in the Boolean lattice. We find a strong difference between Ramsey numbers on the Boolean lattice and ordered Ramsey numbers when the partial ordering on the graphs have large antichains.
doi_str_mv 10.1007/s11083-017-9449-9
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2116437951</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2116437951</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-7dfa8b39db9683b85c53e8b8ae5d760bebc6ce11404842addbf9db01657beafd3</originalsourceid><addsrcrecordid>eNp1kEtLAzEUhYMoWKs_wN2AKxfR3Ml7KcUXFCs-1iGZ3JGWaacm00X_vSkjuHJ1N9855_IRcgnsBhjTtxmAGU4ZaGqFsNQekQlIXVNba35MJgyUpoZZcUrOcl4xxriVakKu3_w647562a0Dply1fapefRqWvuv2dJEiJozVOw75nJy0vst48Xun5PPh_mP2ROeLx-fZ3Zw2HNRAdWy9CdzGYJXhwchGcjTBeJRRKxYwNKpBAMGEEbWPMbSFLe9JHdC3kU_J1di7Tf33DvPgVv0ubcqkqwGU4NpKKBSMVJP6nBO2bpuWa5_2Dpg7GHGjEVeMuIMRZ0umHjO5sJsvTH_N_4d-AEjqYwo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2116437951</pqid></control><display><type>article</type><title>Ramsey Numbers for Partially-Ordered Sets</title><source>SpringerLink Journals</source><creator>Cox, Christopher ; Stolee, Derrick</creator><creatorcontrib>Cox, Christopher ; Stolee, Derrick</creatorcontrib><description>We present a refinement of Ramsey numbers by considering graphs with a partial ordering on their vertices. This is a natural extension of the ordered Ramsey numbers. We formalize situations in which we can use arbitrary families of partially-ordered sets to form host graphs for Ramsey problems. We explore connections to well studied Turán-type problems in partially-ordered sets, particularly those in the Boolean lattice. We find a strong difference between Ramsey numbers on the Boolean lattice and ordered Ramsey numbers when the partial ordering on the graphs have large antichains.</description><identifier>ISSN: 0167-8094</identifier><identifier>EISSN: 1572-9273</identifier><identifier>DOI: 10.1007/s11083-017-9449-9</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Algebra ; Boolean algebra ; Discrete Mathematics ; Graphs ; Lattices ; Mathematics ; Mathematics and Statistics ; Numbers ; Order ; Ordered Algebraic Structures ; Software reviews</subject><ispartof>Order (Dordrecht), 2018-11, Vol.35 (3), p.557-579</ispartof><rights>Springer Science+Business Media B.V., part of Springer Nature 2018</rights><rights>Copyright Springer Science &amp; Business Media 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-7dfa8b39db9683b85c53e8b8ae5d760bebc6ce11404842addbf9db01657beafd3</citedby><cites>FETCH-LOGICAL-c316t-7dfa8b39db9683b85c53e8b8ae5d760bebc6ce11404842addbf9db01657beafd3</cites><orcidid>0000-0001-6327-578X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11083-017-9449-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11083-017-9449-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids></links><search><creatorcontrib>Cox, Christopher</creatorcontrib><creatorcontrib>Stolee, Derrick</creatorcontrib><title>Ramsey Numbers for Partially-Ordered Sets</title><title>Order (Dordrecht)</title><addtitle>Order</addtitle><description>We present a refinement of Ramsey numbers by considering graphs with a partial ordering on their vertices. This is a natural extension of the ordered Ramsey numbers. We formalize situations in which we can use arbitrary families of partially-ordered sets to form host graphs for Ramsey problems. We explore connections to well studied Turán-type problems in partially-ordered sets, particularly those in the Boolean lattice. We find a strong difference between Ramsey numbers on the Boolean lattice and ordered Ramsey numbers when the partial ordering on the graphs have large antichains.</description><subject>Algebra</subject><subject>Boolean algebra</subject><subject>Discrete Mathematics</subject><subject>Graphs</subject><subject>Lattices</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Numbers</subject><subject>Order</subject><subject>Ordered Algebraic Structures</subject><subject>Software reviews</subject><issn>0167-8094</issn><issn>1572-9273</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kEtLAzEUhYMoWKs_wN2AKxfR3Ml7KcUXFCs-1iGZ3JGWaacm00X_vSkjuHJ1N9855_IRcgnsBhjTtxmAGU4ZaGqFsNQekQlIXVNba35MJgyUpoZZcUrOcl4xxriVakKu3_w647562a0Dply1fapefRqWvuv2dJEiJozVOw75nJy0vst48Xun5PPh_mP2ROeLx-fZ3Zw2HNRAdWy9CdzGYJXhwchGcjTBeJRRKxYwNKpBAMGEEbWPMbSFLe9JHdC3kU_J1di7Tf33DvPgVv0ubcqkqwGU4NpKKBSMVJP6nBO2bpuWa5_2Dpg7GHGjEVeMuIMRZ0umHjO5sJsvTH_N_4d-AEjqYwo</recordid><startdate>20181101</startdate><enddate>20181101</enddate><creator>Cox, Christopher</creator><creator>Stolee, Derrick</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-6327-578X</orcidid></search><sort><creationdate>20181101</creationdate><title>Ramsey Numbers for Partially-Ordered Sets</title><author>Cox, Christopher ; Stolee, Derrick</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-7dfa8b39db9683b85c53e8b8ae5d760bebc6ce11404842addbf9db01657beafd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Algebra</topic><topic>Boolean algebra</topic><topic>Discrete Mathematics</topic><topic>Graphs</topic><topic>Lattices</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Numbers</topic><topic>Order</topic><topic>Ordered Algebraic Structures</topic><topic>Software reviews</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cox, Christopher</creatorcontrib><creatorcontrib>Stolee, Derrick</creatorcontrib><collection>CrossRef</collection><jtitle>Order (Dordrecht)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cox, Christopher</au><au>Stolee, Derrick</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ramsey Numbers for Partially-Ordered Sets</atitle><jtitle>Order (Dordrecht)</jtitle><stitle>Order</stitle><date>2018-11-01</date><risdate>2018</risdate><volume>35</volume><issue>3</issue><spage>557</spage><epage>579</epage><pages>557-579</pages><issn>0167-8094</issn><eissn>1572-9273</eissn><abstract>We present a refinement of Ramsey numbers by considering graphs with a partial ordering on their vertices. This is a natural extension of the ordered Ramsey numbers. We formalize situations in which we can use arbitrary families of partially-ordered sets to form host graphs for Ramsey problems. We explore connections to well studied Turán-type problems in partially-ordered sets, particularly those in the Boolean lattice. We find a strong difference between Ramsey numbers on the Boolean lattice and ordered Ramsey numbers when the partial ordering on the graphs have large antichains.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s11083-017-9449-9</doi><tpages>23</tpages><orcidid>https://orcid.org/0000-0001-6327-578X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0167-8094
ispartof Order (Dordrecht), 2018-11, Vol.35 (3), p.557-579
issn 0167-8094
1572-9273
language eng
recordid cdi_proquest_journals_2116437951
source SpringerLink Journals
subjects Algebra
Boolean algebra
Discrete Mathematics
Graphs
Lattices
Mathematics
Mathematics and Statistics
Numbers
Order
Ordered Algebraic Structures
Software reviews
title Ramsey Numbers for Partially-Ordered Sets
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T06%3A07%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ramsey%20Numbers%20for%20Partially-Ordered%20Sets&rft.jtitle=Order%20(Dordrecht)&rft.au=Cox,%20Christopher&rft.date=2018-11-01&rft.volume=35&rft.issue=3&rft.spage=557&rft.epage=579&rft.pages=557-579&rft.issn=0167-8094&rft.eissn=1572-9273&rft_id=info:doi/10.1007/s11083-017-9449-9&rft_dat=%3Cproquest_cross%3E2116437951%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2116437951&rft_id=info:pmid/&rfr_iscdi=true