A Stochastic Model of Carcinogenesis and Tumor Size at Detection

This paper discusses the distribution of tumor size at detection derived within the framework of a new stochastic model of carcinogenesis. This distribution assumes a simple limiting form, with age at detection tending to infinity which is found to be a generalization of the distribution that arises...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advances in applied probability 1997-09, Vol.29 (3), p.607-628
Hauptverfasser: Hanin, L. G., Rachev, S. T., Tsodikov, A. D., Yakovlev, A. Yu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 628
container_issue 3
container_start_page 607
container_title Advances in applied probability
container_volume 29
creator Hanin, L. G.
Rachev, S. T.
Tsodikov, A. D.
Yakovlev, A. Yu
description This paper discusses the distribution of tumor size at detection derived within the framework of a new stochastic model of carcinogenesis. This distribution assumes a simple limiting form, with age at detection tending to infinity which is found to be a generalization of the distribution that arises in the length-biased sampling. Two versions of the model are considered with reference to spontaneous and induced carcinogenesis; both of them show similar asymptotic behavior. When the limiting distribution is applied to real data analysis its adequacy can be tested through testing the conditional independence of the size, V, and the age, A, at detection given A > t*, where the value of t* is to be estimated from the given sample. This is illustrated with an application to data on premenopausal breast cancer. The proposed distribution offers the prospect of the estimation of some biologically meaningful parameters descriptive of the temporal organization of tumor latency. An estimate of the model stability to the prior distribution of tumor size and some other stability results for the Bayes formula are given.
doi_str_mv 10.2307/1428079
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_211621851</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_2307_1428079</cupid><jstor_id>1428079</jstor_id><sourcerecordid>1428079</sourcerecordid><originalsourceid>FETCH-LOGICAL-c311t-f10fbe12989a1c3928a8175ee2d478c16e7ebdd121866911aa8e3182875b2f273</originalsourceid><addsrcrecordid>eNp90M9LwzAUB_AgCtYp_gtBBPFQzUvbJL05Nn_BxMPmuaTp68zYmplkB_3rrawgePD0ePB53wdfQs6B3fCMyVvIuWKyPCAJ5LJIBRP5IUkYY5AqIdUxOQlh1a-ZVCwhd2M6j8686xCtoS-uwTV1LZ1ob2znlthhsIHqrqGL3cZ5OrdfSHWkU4xoonXdKTlq9Trg2TBH5O3hfjF5Smevj8-T8Sw1GUBMW2BtjcBLVWowWcmVViALRN7kUhkQKLFuGuCghCgBtFaYgeJKFjVvucxG5GKfu_XuY4chViu3813_suIAor8roEdXe2S8C8FjW2293Wj_WQGrftqphnZ6ebmXqxCd_4ddD4F6U3vbLPH37V_7DRShbIc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>211621851</pqid></control><display><type>article</type><title>A Stochastic Model of Carcinogenesis and Tumor Size at Detection</title><source>JSTOR Mathematics &amp; Statistics</source><source>JSTOR Archive Collection A-Z Listing</source><creator>Hanin, L. G. ; Rachev, S. T. ; Tsodikov, A. D. ; Yakovlev, A. Yu</creator><creatorcontrib>Hanin, L. G. ; Rachev, S. T. ; Tsodikov, A. D. ; Yakovlev, A. Yu</creatorcontrib><description>This paper discusses the distribution of tumor size at detection derived within the framework of a new stochastic model of carcinogenesis. This distribution assumes a simple limiting form, with age at detection tending to infinity which is found to be a generalization of the distribution that arises in the length-biased sampling. Two versions of the model are considered with reference to spontaneous and induced carcinogenesis; both of them show similar asymptotic behavior. When the limiting distribution is applied to real data analysis its adequacy can be tested through testing the conditional independence of the size, V, and the age, A, at detection given A &gt; t*, where the value of t* is to be estimated from the given sample. This is illustrated with an application to data on premenopausal breast cancer. The proposed distribution offers the prospect of the estimation of some biologically meaningful parameters descriptive of the temporal organization of tumor latency. An estimate of the model stability to the prior distribution of tumor size and some other stability results for the Bayes formula are given.</description><identifier>ISSN: 0001-8678</identifier><identifier>EISSN: 1475-6064</identifier><identifier>DOI: 10.2307/1428079</identifier><identifier>CODEN: AAPBBD</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Cancer ; Carcinogenesis ; Distribution ; Dosage ; General Applied Probability ; Lesions ; Mathematics ; Parametric models ; Perceptron convergence procedure ; Probability ; Statistical analysis ; Stochastic models ; Studies ; Topological theorems ; Tumors</subject><ispartof>Advances in applied probability, 1997-09, Vol.29 (3), p.607-628</ispartof><rights>Copyright © Applied Probability Trust 1997</rights><rights>Copyright 1997 Applied Probability Trust</rights><rights>Copyright Applied Probability Trust Sep 1997</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c311t-f10fbe12989a1c3928a8175ee2d478c16e7ebdd121866911aa8e3182875b2f273</citedby><cites>FETCH-LOGICAL-c311t-f10fbe12989a1c3928a8175ee2d478c16e7ebdd121866911aa8e3182875b2f273</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/1428079$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/1428079$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>315,782,786,805,834,27933,27934,58026,58030,58259,58263</link.rule.ids></links><search><creatorcontrib>Hanin, L. G.</creatorcontrib><creatorcontrib>Rachev, S. T.</creatorcontrib><creatorcontrib>Tsodikov, A. D.</creatorcontrib><creatorcontrib>Yakovlev, A. Yu</creatorcontrib><title>A Stochastic Model of Carcinogenesis and Tumor Size at Detection</title><title>Advances in applied probability</title><addtitle>Advances in Applied Probability</addtitle><description>This paper discusses the distribution of tumor size at detection derived within the framework of a new stochastic model of carcinogenesis. This distribution assumes a simple limiting form, with age at detection tending to infinity which is found to be a generalization of the distribution that arises in the length-biased sampling. Two versions of the model are considered with reference to spontaneous and induced carcinogenesis; both of them show similar asymptotic behavior. When the limiting distribution is applied to real data analysis its adequacy can be tested through testing the conditional independence of the size, V, and the age, A, at detection given A &gt; t*, where the value of t* is to be estimated from the given sample. This is illustrated with an application to data on premenopausal breast cancer. The proposed distribution offers the prospect of the estimation of some biologically meaningful parameters descriptive of the temporal organization of tumor latency. An estimate of the model stability to the prior distribution of tumor size and some other stability results for the Bayes formula are given.</description><subject>Cancer</subject><subject>Carcinogenesis</subject><subject>Distribution</subject><subject>Dosage</subject><subject>General Applied Probability</subject><subject>Lesions</subject><subject>Mathematics</subject><subject>Parametric models</subject><subject>Perceptron convergence procedure</subject><subject>Probability</subject><subject>Statistical analysis</subject><subject>Stochastic models</subject><subject>Studies</subject><subject>Topological theorems</subject><subject>Tumors</subject><issn>0001-8678</issn><issn>1475-6064</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1997</creationdate><recordtype>article</recordtype><recordid>eNp90M9LwzAUB_AgCtYp_gtBBPFQzUvbJL05Nn_BxMPmuaTp68zYmplkB_3rrawgePD0ePB53wdfQs6B3fCMyVvIuWKyPCAJ5LJIBRP5IUkYY5AqIdUxOQlh1a-ZVCwhd2M6j8686xCtoS-uwTV1LZ1ob2znlthhsIHqrqGL3cZ5OrdfSHWkU4xoonXdKTlq9Trg2TBH5O3hfjF5Smevj8-T8Sw1GUBMW2BtjcBLVWowWcmVViALRN7kUhkQKLFuGuCghCgBtFaYgeJKFjVvucxG5GKfu_XuY4chViu3813_suIAor8roEdXe2S8C8FjW2293Wj_WQGrftqphnZ6ebmXqxCd_4ddD4F6U3vbLPH37V_7DRShbIc</recordid><startdate>199709</startdate><enddate>199709</enddate><creator>Hanin, L. G.</creator><creator>Rachev, S. T.</creator><creator>Tsodikov, A. D.</creator><creator>Yakovlev, A. Yu</creator><general>Cambridge University Press</general><general>Applied Probability Trust</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>199709</creationdate><title>A Stochastic Model of Carcinogenesis and Tumor Size at Detection</title><author>Hanin, L. G. ; Rachev, S. T. ; Tsodikov, A. D. ; Yakovlev, A. Yu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c311t-f10fbe12989a1c3928a8175ee2d478c16e7ebdd121866911aa8e3182875b2f273</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1997</creationdate><topic>Cancer</topic><topic>Carcinogenesis</topic><topic>Distribution</topic><topic>Dosage</topic><topic>General Applied Probability</topic><topic>Lesions</topic><topic>Mathematics</topic><topic>Parametric models</topic><topic>Perceptron convergence procedure</topic><topic>Probability</topic><topic>Statistical analysis</topic><topic>Stochastic models</topic><topic>Studies</topic><topic>Topological theorems</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hanin, L. G.</creatorcontrib><creatorcontrib>Rachev, S. T.</creatorcontrib><creatorcontrib>Tsodikov, A. D.</creatorcontrib><creatorcontrib>Yakovlev, A. Yu</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Advances in applied probability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hanin, L. G.</au><au>Rachev, S. T.</au><au>Tsodikov, A. D.</au><au>Yakovlev, A. Yu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Stochastic Model of Carcinogenesis and Tumor Size at Detection</atitle><jtitle>Advances in applied probability</jtitle><addtitle>Advances in Applied Probability</addtitle><date>1997-09</date><risdate>1997</risdate><volume>29</volume><issue>3</issue><spage>607</spage><epage>628</epage><pages>607-628</pages><issn>0001-8678</issn><eissn>1475-6064</eissn><coden>AAPBBD</coden><abstract>This paper discusses the distribution of tumor size at detection derived within the framework of a new stochastic model of carcinogenesis. This distribution assumes a simple limiting form, with age at detection tending to infinity which is found to be a generalization of the distribution that arises in the length-biased sampling. Two versions of the model are considered with reference to spontaneous and induced carcinogenesis; both of them show similar asymptotic behavior. When the limiting distribution is applied to real data analysis its adequacy can be tested through testing the conditional independence of the size, V, and the age, A, at detection given A &gt; t*, where the value of t* is to be estimated from the given sample. This is illustrated with an application to data on premenopausal breast cancer. The proposed distribution offers the prospect of the estimation of some biologically meaningful parameters descriptive of the temporal organization of tumor latency. An estimate of the model stability to the prior distribution of tumor size and some other stability results for the Bayes formula are given.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.2307/1428079</doi><tpages>22</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0001-8678
ispartof Advances in applied probability, 1997-09, Vol.29 (3), p.607-628
issn 0001-8678
1475-6064
language eng
recordid cdi_proquest_journals_211621851
source JSTOR Mathematics & Statistics; JSTOR Archive Collection A-Z Listing
subjects Cancer
Carcinogenesis
Distribution
Dosage
General Applied Probability
Lesions
Mathematics
Parametric models
Perceptron convergence procedure
Probability
Statistical analysis
Stochastic models
Studies
Topological theorems
Tumors
title A Stochastic Model of Carcinogenesis and Tumor Size at Detection
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-02T05%3A52%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Stochastic%20Model%20of%20Carcinogenesis%20and%20Tumor%20Size%20at%20Detection&rft.jtitle=Advances%20in%20applied%20probability&rft.au=Hanin,%20L.%20G.&rft.date=1997-09&rft.volume=29&rft.issue=3&rft.spage=607&rft.epage=628&rft.pages=607-628&rft.issn=0001-8678&rft.eissn=1475-6064&rft.coden=AAPBBD&rft_id=info:doi/10.2307/1428079&rft_dat=%3Cjstor_proqu%3E1428079%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=211621851&rft_id=info:pmid/&rft_cupid=10_2307_1428079&rft_jstor_id=1428079&rfr_iscdi=true