Lie superbialgebra structures on the Lie superalgebra C3+A and deformation of related integrable Hamiltonian systems

Admissible structure constants related to the dual Lie superalgebras of particular Lie superalgebra (C3+A) are found by straightforward calculations from the matrix form of super Jacobi and mixed super Jacobi identities which are obtained from adjoint representation. Then, by making use of the autom...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mathematical physics 2017-06, Vol.58 (6)
Hauptverfasser: Eghbali, A., Rezaei-Aghdam, A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Admissible structure constants related to the dual Lie superalgebras of particular Lie superalgebra (C3+A) are found by straightforward calculations from the matrix form of super Jacobi and mixed super Jacobi identities which are obtained from adjoint representation. Then, by making use of the automorphism supergroup of the Lie superalgebra (C3+A), the Lie superbialgebra structures on the Lie superalgebra (C3+A) are obtained and classified into inequivalent 31 families. We also determine all corresponding coboundary and bi-r-matrix Lie superbialgebras. The quantum deformations associated with some Lie superbialgebras (C3+A) are obtained, together with the corresponding deformed Casimir elements. As an application of these quantum deformations, we construct a deformed integrable Hamiltonian system from the representation of the Hopf superalgebra Uλ(Cp=12, ⊕A1,1)(C3+A).
ISSN:0022-2488
1089-7658
DOI:10.1063/1.4989690