Effect of solar irradiation on forced convective heat transfer through a nanofluid based direct absorption solar collector

The present work investigates numerically the convective and radiative heat transfer performance and entropy generation of forced convection through a direct absorption solar collector (DASC). Four different fluids; Cu-water nanofluid, Al2O3-waternanofluid, TiO2-water nanofluid and pure water are us...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Parvin, Salma, Ahmed, Sajid, Chowdhury, Raju
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The present work investigates numerically the convective and radiative heat transfer performance and entropy generation of forced convection through a direct absorption solar collector (DASC). Four different fluids; Cu-water nanofluid, Al2O3-waternanofluid, TiO2-water nanofluid and pure water are used as the working fluid. Entropy production has been taken into account in addition to the collector efficiency and heat transfer enhancement. Penalty finite element method with Galerkin’s weighted residual technique is used to solve the governing non-linear partial differential equations. Numerical simulations are performed for the variation of solar irradiation (I). The outcomes are presented in the form of isotherms, average output temperature, the average Nusselt number, collector efficiency, average entropy generation and Bejan number. The results present that the rate of heat transfer and collector efficiency enhance significantly for raising the values of I upto a certain range.
ISSN:0094-243X
1551-7616
DOI:10.1063/1.4984696