Surfaces for high heat dissipation with no Leidenfrost limit
Heat dissipation from hot surfaces through cooling droplets is limited by the Leidenfrost point (LFP), in which an insulating vapor film prevents direct contact between the cooling droplet and the hot surface. A range of approaches have been developed to raise this limit to higher temperatures, but...
Gespeichert in:
Veröffentlicht in: | Applied physics letters 2017-07, Vol.111 (2) |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 2 |
container_start_page | |
container_title | Applied physics letters |
container_volume | 111 |
creator | Sajadi, Seyed Mohammad Irajizad, Peyman Kashyap, Varun Farokhnia, Nazanin Ghasemi, Hadi |
description | Heat dissipation from hot surfaces through cooling droplets is limited by the Leidenfrost point (LFP), in which an insulating vapor film prevents direct contact between the cooling droplet and the hot surface. A range of approaches have been developed to raise this limit to higher temperatures, but the limit still exists. Recently, a surface architecture, decoupled hierarchical structure, was developed that allows the suppression of LFP completely. However, heat dissipation by the structure in the low superheat region was inferior to other surfaces and the structure required an extensive micro/nano fabrication procedure. Here, we present a metallic surface structure with no LFP and high heat dissipation capacity in all temperature ranges. The surface features the nucleate boiling phenomenon independent of the temperature with an approximate heat transfer coefficient of 20 kW m−2 K−1. This surface is developed in a one-step process with no micro/nano fabrication. We envision that this metallic surface provides a unique platform for high heat dissipation in power generation, photonics/electronics, and aviation systems. |
doi_str_mv | 10.1063/1.4993775 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2116103468</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2116103468</sourcerecordid><originalsourceid>FETCH-LOGICAL-c362t-7cac99838938989224d9d87dbd5160bee6e2662192e46f71c11829e519b29db43</originalsourceid><addsrcrecordid>eNqdkEtLAzEUhYMoWKsL_0HAlcLU3GQmMwE3UuoDCi7UdZjJw0lpJ2OSKv57oy24Fy4cLnzcc-5B6BzIDAhn1zArhWB1XR2gCZC6LhhAc4gmhBBWcFHBMTqJcZXXijI2QTfP22BbZSK2PuDevfW4N23C2sXoxjY5P-BPl3o8eLw0TpvBBh8TXruNS6foyLbraM72OkWvd4uX-UOxfLp_nN8uC8U4TUWtWiVEwxqRpxGUllroptadroCTzhhuKOcUBDUltzWoHJkKU4HoqNBdyaboYnd3DP59a2KSK78NQ7aUFIADYSVvMnW5o1ROGIOxcgxu04YvCUT-lCNB7svJ7NWOjcql3y__B3_48AfKUVv2DdH4cN8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2116103468</pqid></control><display><type>article</type><title>Surfaces for high heat dissipation with no Leidenfrost limit</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Sajadi, Seyed Mohammad ; Irajizad, Peyman ; Kashyap, Varun ; Farokhnia, Nazanin ; Ghasemi, Hadi</creator><creatorcontrib>Sajadi, Seyed Mohammad ; Irajizad, Peyman ; Kashyap, Varun ; Farokhnia, Nazanin ; Ghasemi, Hadi</creatorcontrib><description>Heat dissipation from hot surfaces through cooling droplets is limited by the Leidenfrost point (LFP), in which an insulating vapor film prevents direct contact between the cooling droplet and the hot surface. A range of approaches have been developed to raise this limit to higher temperatures, but the limit still exists. Recently, a surface architecture, decoupled hierarchical structure, was developed that allows the suppression of LFP completely. However, heat dissipation by the structure in the low superheat region was inferior to other surfaces and the structure required an extensive micro/nano fabrication procedure. Here, we present a metallic surface structure with no LFP and high heat dissipation capacity in all temperature ranges. The surface features the nucleate boiling phenomenon independent of the temperature with an approximate heat transfer coefficient of 20 kW m−2 K−1. This surface is developed in a one-step process with no micro/nano fabrication. We envision that this metallic surface provides a unique platform for high heat dissipation in power generation, photonics/electronics, and aviation systems.</description><identifier>ISSN: 0003-6951</identifier><identifier>EISSN: 1077-3118</identifier><identifier>DOI: 10.1063/1.4993775</identifier><identifier>CODEN: APPLAB</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Applied physics ; Avionics ; Cooling ; Droplets ; Heat ; Heat transfer coefficients ; Hot surfaces ; Nucleate boiling ; Photonics ; Product design ; Structural hierarchy ; Surface structure</subject><ispartof>Applied physics letters, 2017-07, Vol.111 (2)</ispartof><rights>Author(s)</rights><rights>2017 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c362t-7cac99838938989224d9d87dbd5160bee6e2662192e46f71c11829e519b29db43</citedby><cites>FETCH-LOGICAL-c362t-7cac99838938989224d9d87dbd5160bee6e2662192e46f71c11829e519b29db43</cites><orcidid>0000-0002-0554-4248</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/apl/article-lookup/doi/10.1063/1.4993775$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,780,784,794,4509,27922,27923,76154</link.rule.ids></links><search><creatorcontrib>Sajadi, Seyed Mohammad</creatorcontrib><creatorcontrib>Irajizad, Peyman</creatorcontrib><creatorcontrib>Kashyap, Varun</creatorcontrib><creatorcontrib>Farokhnia, Nazanin</creatorcontrib><creatorcontrib>Ghasemi, Hadi</creatorcontrib><title>Surfaces for high heat dissipation with no Leidenfrost limit</title><title>Applied physics letters</title><description>Heat dissipation from hot surfaces through cooling droplets is limited by the Leidenfrost point (LFP), in which an insulating vapor film prevents direct contact between the cooling droplet and the hot surface. A range of approaches have been developed to raise this limit to higher temperatures, but the limit still exists. Recently, a surface architecture, decoupled hierarchical structure, was developed that allows the suppression of LFP completely. However, heat dissipation by the structure in the low superheat region was inferior to other surfaces and the structure required an extensive micro/nano fabrication procedure. Here, we present a metallic surface structure with no LFP and high heat dissipation capacity in all temperature ranges. The surface features the nucleate boiling phenomenon independent of the temperature with an approximate heat transfer coefficient of 20 kW m−2 K−1. This surface is developed in a one-step process with no micro/nano fabrication. We envision that this metallic surface provides a unique platform for high heat dissipation in power generation, photonics/electronics, and aviation systems.</description><subject>Applied physics</subject><subject>Avionics</subject><subject>Cooling</subject><subject>Droplets</subject><subject>Heat</subject><subject>Heat transfer coefficients</subject><subject>Hot surfaces</subject><subject>Nucleate boiling</subject><subject>Photonics</subject><subject>Product design</subject><subject>Structural hierarchy</subject><subject>Surface structure</subject><issn>0003-6951</issn><issn>1077-3118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqdkEtLAzEUhYMoWKsL_0HAlcLU3GQmMwE3UuoDCi7UdZjJw0lpJ2OSKv57oy24Fy4cLnzcc-5B6BzIDAhn1zArhWB1XR2gCZC6LhhAc4gmhBBWcFHBMTqJcZXXijI2QTfP22BbZSK2PuDevfW4N23C2sXoxjY5P-BPl3o8eLw0TpvBBh8TXruNS6foyLbraM72OkWvd4uX-UOxfLp_nN8uC8U4TUWtWiVEwxqRpxGUllroptadroCTzhhuKOcUBDUltzWoHJkKU4HoqNBdyaboYnd3DP59a2KSK78NQ7aUFIADYSVvMnW5o1ROGIOxcgxu04YvCUT-lCNB7svJ7NWOjcql3y__B3_48AfKUVv2DdH4cN8</recordid><startdate>20170710</startdate><enddate>20170710</enddate><creator>Sajadi, Seyed Mohammad</creator><creator>Irajizad, Peyman</creator><creator>Kashyap, Varun</creator><creator>Farokhnia, Nazanin</creator><creator>Ghasemi, Hadi</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-0554-4248</orcidid></search><sort><creationdate>20170710</creationdate><title>Surfaces for high heat dissipation with no Leidenfrost limit</title><author>Sajadi, Seyed Mohammad ; Irajizad, Peyman ; Kashyap, Varun ; Farokhnia, Nazanin ; Ghasemi, Hadi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c362t-7cac99838938989224d9d87dbd5160bee6e2662192e46f71c11829e519b29db43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Applied physics</topic><topic>Avionics</topic><topic>Cooling</topic><topic>Droplets</topic><topic>Heat</topic><topic>Heat transfer coefficients</topic><topic>Hot surfaces</topic><topic>Nucleate boiling</topic><topic>Photonics</topic><topic>Product design</topic><topic>Structural hierarchy</topic><topic>Surface structure</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sajadi, Seyed Mohammad</creatorcontrib><creatorcontrib>Irajizad, Peyman</creatorcontrib><creatorcontrib>Kashyap, Varun</creatorcontrib><creatorcontrib>Farokhnia, Nazanin</creatorcontrib><creatorcontrib>Ghasemi, Hadi</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Applied physics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sajadi, Seyed Mohammad</au><au>Irajizad, Peyman</au><au>Kashyap, Varun</au><au>Farokhnia, Nazanin</au><au>Ghasemi, Hadi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Surfaces for high heat dissipation with no Leidenfrost limit</atitle><jtitle>Applied physics letters</jtitle><date>2017-07-10</date><risdate>2017</risdate><volume>111</volume><issue>2</issue><issn>0003-6951</issn><eissn>1077-3118</eissn><coden>APPLAB</coden><abstract>Heat dissipation from hot surfaces through cooling droplets is limited by the Leidenfrost point (LFP), in which an insulating vapor film prevents direct contact between the cooling droplet and the hot surface. A range of approaches have been developed to raise this limit to higher temperatures, but the limit still exists. Recently, a surface architecture, decoupled hierarchical structure, was developed that allows the suppression of LFP completely. However, heat dissipation by the structure in the low superheat region was inferior to other surfaces and the structure required an extensive micro/nano fabrication procedure. Here, we present a metallic surface structure with no LFP and high heat dissipation capacity in all temperature ranges. The surface features the nucleate boiling phenomenon independent of the temperature with an approximate heat transfer coefficient of 20 kW m−2 K−1. This surface is developed in a one-step process with no micro/nano fabrication. We envision that this metallic surface provides a unique platform for high heat dissipation in power generation, photonics/electronics, and aviation systems.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.4993775</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-0554-4248</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0003-6951 |
ispartof | Applied physics letters, 2017-07, Vol.111 (2) |
issn | 0003-6951 1077-3118 |
language | eng |
recordid | cdi_proquest_journals_2116103468 |
source | AIP Journals Complete; Alma/SFX Local Collection |
subjects | Applied physics Avionics Cooling Droplets Heat Heat transfer coefficients Hot surfaces Nucleate boiling Photonics Product design Structural hierarchy Surface structure |
title | Surfaces for high heat dissipation with no Leidenfrost limit |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T01%3A56%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Surfaces%20for%20high%20heat%20dissipation%20with%20no%20Leidenfrost%20limit&rft.jtitle=Applied%20physics%20letters&rft.au=Sajadi,%20Seyed%20Mohammad&rft.date=2017-07-10&rft.volume=111&rft.issue=2&rft.issn=0003-6951&rft.eissn=1077-3118&rft.coden=APPLAB&rft_id=info:doi/10.1063/1.4993775&rft_dat=%3Cproquest_cross%3E2116103468%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2116103468&rft_id=info:pmid/&rfr_iscdi=true |