Surfaces for high heat dissipation with no Leidenfrost limit

Heat dissipation from hot surfaces through cooling droplets is limited by the Leidenfrost point (LFP), in which an insulating vapor film prevents direct contact between the cooling droplet and the hot surface. A range of approaches have been developed to raise this limit to higher temperatures, but...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied physics letters 2017-07, Vol.111 (2)
Hauptverfasser: Sajadi, Seyed Mohammad, Irajizad, Peyman, Kashyap, Varun, Farokhnia, Nazanin, Ghasemi, Hadi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 2
container_start_page
container_title Applied physics letters
container_volume 111
creator Sajadi, Seyed Mohammad
Irajizad, Peyman
Kashyap, Varun
Farokhnia, Nazanin
Ghasemi, Hadi
description Heat dissipation from hot surfaces through cooling droplets is limited by the Leidenfrost point (LFP), in which an insulating vapor film prevents direct contact between the cooling droplet and the hot surface. A range of approaches have been developed to raise this limit to higher temperatures, but the limit still exists. Recently, a surface architecture, decoupled hierarchical structure, was developed that allows the suppression of LFP completely. However, heat dissipation by the structure in the low superheat region was inferior to other surfaces and the structure required an extensive micro/nano fabrication procedure. Here, we present a metallic surface structure with no LFP and high heat dissipation capacity in all temperature ranges. The surface features the nucleate boiling phenomenon independent of the temperature with an approximate heat transfer coefficient of 20 kW m−2 K−1. This surface is developed in a one-step process with no micro/nano fabrication. We envision that this metallic surface provides a unique platform for high heat dissipation in power generation, photonics/electronics, and aviation systems.
doi_str_mv 10.1063/1.4993775
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2116103468</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2116103468</sourcerecordid><originalsourceid>FETCH-LOGICAL-c362t-7cac99838938989224d9d87dbd5160bee6e2662192e46f71c11829e519b29db43</originalsourceid><addsrcrecordid>eNqdkEtLAzEUhYMoWKsL_0HAlcLU3GQmMwE3UuoDCi7UdZjJw0lpJ2OSKv57oy24Fy4cLnzcc-5B6BzIDAhn1zArhWB1XR2gCZC6LhhAc4gmhBBWcFHBMTqJcZXXijI2QTfP22BbZSK2PuDevfW4N23C2sXoxjY5P-BPl3o8eLw0TpvBBh8TXruNS6foyLbraM72OkWvd4uX-UOxfLp_nN8uC8U4TUWtWiVEwxqRpxGUllroptadroCTzhhuKOcUBDUltzWoHJkKU4HoqNBdyaboYnd3DP59a2KSK78NQ7aUFIADYSVvMnW5o1ROGIOxcgxu04YvCUT-lCNB7svJ7NWOjcql3y__B3_48AfKUVv2DdH4cN8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2116103468</pqid></control><display><type>article</type><title>Surfaces for high heat dissipation with no Leidenfrost limit</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Sajadi, Seyed Mohammad ; Irajizad, Peyman ; Kashyap, Varun ; Farokhnia, Nazanin ; Ghasemi, Hadi</creator><creatorcontrib>Sajadi, Seyed Mohammad ; Irajizad, Peyman ; Kashyap, Varun ; Farokhnia, Nazanin ; Ghasemi, Hadi</creatorcontrib><description>Heat dissipation from hot surfaces through cooling droplets is limited by the Leidenfrost point (LFP), in which an insulating vapor film prevents direct contact between the cooling droplet and the hot surface. A range of approaches have been developed to raise this limit to higher temperatures, but the limit still exists. Recently, a surface architecture, decoupled hierarchical structure, was developed that allows the suppression of LFP completely. However, heat dissipation by the structure in the low superheat region was inferior to other surfaces and the structure required an extensive micro/nano fabrication procedure. Here, we present a metallic surface structure with no LFP and high heat dissipation capacity in all temperature ranges. The surface features the nucleate boiling phenomenon independent of the temperature with an approximate heat transfer coefficient of 20 kW m−2 K−1. This surface is developed in a one-step process with no micro/nano fabrication. We envision that this metallic surface provides a unique platform for high heat dissipation in power generation, photonics/electronics, and aviation systems.</description><identifier>ISSN: 0003-6951</identifier><identifier>EISSN: 1077-3118</identifier><identifier>DOI: 10.1063/1.4993775</identifier><identifier>CODEN: APPLAB</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Applied physics ; Avionics ; Cooling ; Droplets ; Heat ; Heat transfer coefficients ; Hot surfaces ; Nucleate boiling ; Photonics ; Product design ; Structural hierarchy ; Surface structure</subject><ispartof>Applied physics letters, 2017-07, Vol.111 (2)</ispartof><rights>Author(s)</rights><rights>2017 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c362t-7cac99838938989224d9d87dbd5160bee6e2662192e46f71c11829e519b29db43</citedby><cites>FETCH-LOGICAL-c362t-7cac99838938989224d9d87dbd5160bee6e2662192e46f71c11829e519b29db43</cites><orcidid>0000-0002-0554-4248</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/apl/article-lookup/doi/10.1063/1.4993775$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,780,784,794,4509,27922,27923,76154</link.rule.ids></links><search><creatorcontrib>Sajadi, Seyed Mohammad</creatorcontrib><creatorcontrib>Irajizad, Peyman</creatorcontrib><creatorcontrib>Kashyap, Varun</creatorcontrib><creatorcontrib>Farokhnia, Nazanin</creatorcontrib><creatorcontrib>Ghasemi, Hadi</creatorcontrib><title>Surfaces for high heat dissipation with no Leidenfrost limit</title><title>Applied physics letters</title><description>Heat dissipation from hot surfaces through cooling droplets is limited by the Leidenfrost point (LFP), in which an insulating vapor film prevents direct contact between the cooling droplet and the hot surface. A range of approaches have been developed to raise this limit to higher temperatures, but the limit still exists. Recently, a surface architecture, decoupled hierarchical structure, was developed that allows the suppression of LFP completely. However, heat dissipation by the structure in the low superheat region was inferior to other surfaces and the structure required an extensive micro/nano fabrication procedure. Here, we present a metallic surface structure with no LFP and high heat dissipation capacity in all temperature ranges. The surface features the nucleate boiling phenomenon independent of the temperature with an approximate heat transfer coefficient of 20 kW m−2 K−1. This surface is developed in a one-step process with no micro/nano fabrication. We envision that this metallic surface provides a unique platform for high heat dissipation in power generation, photonics/electronics, and aviation systems.</description><subject>Applied physics</subject><subject>Avionics</subject><subject>Cooling</subject><subject>Droplets</subject><subject>Heat</subject><subject>Heat transfer coefficients</subject><subject>Hot surfaces</subject><subject>Nucleate boiling</subject><subject>Photonics</subject><subject>Product design</subject><subject>Structural hierarchy</subject><subject>Surface structure</subject><issn>0003-6951</issn><issn>1077-3118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqdkEtLAzEUhYMoWKsL_0HAlcLU3GQmMwE3UuoDCi7UdZjJw0lpJ2OSKv57oy24Fy4cLnzcc-5B6BzIDAhn1zArhWB1XR2gCZC6LhhAc4gmhBBWcFHBMTqJcZXXijI2QTfP22BbZSK2PuDevfW4N23C2sXoxjY5P-BPl3o8eLw0TpvBBh8TXruNS6foyLbraM72OkWvd4uX-UOxfLp_nN8uC8U4TUWtWiVEwxqRpxGUllroptadroCTzhhuKOcUBDUltzWoHJkKU4HoqNBdyaboYnd3DP59a2KSK78NQ7aUFIADYSVvMnW5o1ROGIOxcgxu04YvCUT-lCNB7svJ7NWOjcql3y__B3_48AfKUVv2DdH4cN8</recordid><startdate>20170710</startdate><enddate>20170710</enddate><creator>Sajadi, Seyed Mohammad</creator><creator>Irajizad, Peyman</creator><creator>Kashyap, Varun</creator><creator>Farokhnia, Nazanin</creator><creator>Ghasemi, Hadi</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-0554-4248</orcidid></search><sort><creationdate>20170710</creationdate><title>Surfaces for high heat dissipation with no Leidenfrost limit</title><author>Sajadi, Seyed Mohammad ; Irajizad, Peyman ; Kashyap, Varun ; Farokhnia, Nazanin ; Ghasemi, Hadi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c362t-7cac99838938989224d9d87dbd5160bee6e2662192e46f71c11829e519b29db43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Applied physics</topic><topic>Avionics</topic><topic>Cooling</topic><topic>Droplets</topic><topic>Heat</topic><topic>Heat transfer coefficients</topic><topic>Hot surfaces</topic><topic>Nucleate boiling</topic><topic>Photonics</topic><topic>Product design</topic><topic>Structural hierarchy</topic><topic>Surface structure</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sajadi, Seyed Mohammad</creatorcontrib><creatorcontrib>Irajizad, Peyman</creatorcontrib><creatorcontrib>Kashyap, Varun</creatorcontrib><creatorcontrib>Farokhnia, Nazanin</creatorcontrib><creatorcontrib>Ghasemi, Hadi</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Applied physics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sajadi, Seyed Mohammad</au><au>Irajizad, Peyman</au><au>Kashyap, Varun</au><au>Farokhnia, Nazanin</au><au>Ghasemi, Hadi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Surfaces for high heat dissipation with no Leidenfrost limit</atitle><jtitle>Applied physics letters</jtitle><date>2017-07-10</date><risdate>2017</risdate><volume>111</volume><issue>2</issue><issn>0003-6951</issn><eissn>1077-3118</eissn><coden>APPLAB</coden><abstract>Heat dissipation from hot surfaces through cooling droplets is limited by the Leidenfrost point (LFP), in which an insulating vapor film prevents direct contact between the cooling droplet and the hot surface. A range of approaches have been developed to raise this limit to higher temperatures, but the limit still exists. Recently, a surface architecture, decoupled hierarchical structure, was developed that allows the suppression of LFP completely. However, heat dissipation by the structure in the low superheat region was inferior to other surfaces and the structure required an extensive micro/nano fabrication procedure. Here, we present a metallic surface structure with no LFP and high heat dissipation capacity in all temperature ranges. The surface features the nucleate boiling phenomenon independent of the temperature with an approximate heat transfer coefficient of 20 kW m−2 K−1. This surface is developed in a one-step process with no micro/nano fabrication. We envision that this metallic surface provides a unique platform for high heat dissipation in power generation, photonics/electronics, and aviation systems.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.4993775</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-0554-4248</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0003-6951
ispartof Applied physics letters, 2017-07, Vol.111 (2)
issn 0003-6951
1077-3118
language eng
recordid cdi_proquest_journals_2116103468
source AIP Journals Complete; Alma/SFX Local Collection
subjects Applied physics
Avionics
Cooling
Droplets
Heat
Heat transfer coefficients
Hot surfaces
Nucleate boiling
Photonics
Product design
Structural hierarchy
Surface structure
title Surfaces for high heat dissipation with no Leidenfrost limit
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T01%3A56%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Surfaces%20for%20high%20heat%20dissipation%20with%20no%20Leidenfrost%20limit&rft.jtitle=Applied%20physics%20letters&rft.au=Sajadi,%20Seyed%20Mohammad&rft.date=2017-07-10&rft.volume=111&rft.issue=2&rft.issn=0003-6951&rft.eissn=1077-3118&rft.coden=APPLAB&rft_id=info:doi/10.1063/1.4993775&rft_dat=%3Cproquest_cross%3E2116103468%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2116103468&rft_id=info:pmid/&rfr_iscdi=true