Numerical simulation of flow around the NREL S826 airfoil at moderate Reynolds number using delayed detached Eddy simulation (DDES)

Turbulent flow at Reynolds numbers 5 · 10 4 to 10 6 around the NREL S826 airfoil used for wind turbine blades is simulated using delayed detached eddy simulation (DDES). The 3D domain is built as a replica of the low speed wind tunnel at the Norwegian University of Science and Technology (NTNU) with...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Prytz, Erik R., Huuse, Øyvind, Müller, Bernhard, Bartl, Jan, Sætran, Lars Roar
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page
container_title
container_volume 1863
creator Prytz, Erik R.
Huuse, Øyvind
Müller, Bernhard
Bartl, Jan
Sætran, Lars Roar
description Turbulent flow at Reynolds numbers 5 · 10 4 to 10 6 around the NREL S826 airfoil used for wind turbine blades is simulated using delayed detached eddy simulation (DDES). The 3D domain is built as a replica of the low speed wind tunnel at the Norwegian University of Science and Technology (NTNU) with the wind tunnel walls considered as slip walls. The subgrid turbulent kinetic energy is used to model the sub-grid scale in the large eddy simulation (LES) part of DDES. Different Reynoldsaveraged Navier-Stokes (RANS) models are tested in ANSYS Fluent. The realizable k - ∈ model as the RANS model in DDES is found to yield the best agreement of simulated pressure distributions with the experimental data both from NTNU and the Technical University of Denmark (DTU), the latter for a shorter spanwise domain. The present DDES results are in excellent agreement with LES results from DTU. Since DDES requires much fewer cells in the RANS region near the wing surface than LES, DDES is computationally much more efficient than LES. Whereas DDES is able to predict lift and drag in close agreement with experiment up to stall, pure 2D RANS simulations fail near stall. After testing different numerical settings, time step sizes and grids for DDES, a Reynolds number study is conducted. Near stall, separated flow structures, so-called stall cells, are observed in the DDES results.
doi_str_mv 10.1063/1.4992769
format Conference Proceeding
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_journals_2116100718</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2116100718</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-d7a3731bea7f14643e40b3e8ee736657ce15ef182de1b1255f1934d64f16c7623</originalsourceid><addsrcrecordid>eNp9kE1Lw0AYhBdRsFYP_oMFLyqk7rub7CZHsfUDSoVWwVvYZN-1KUm2bhKlZ_-40Rb05Gnm8DAzDCGnwEbApLiCUZgkXMlkjwwgiiBQEuQ-GTCWhAEPxcshOWqaFWM8USoekM9ZV6Evcl3Spqi6UreFq6mz1Jbug2rvutrQdol0Np9M6SLmkurCW1eUVLe0cga9bpHOcVO70jS07qoMPe2aon6lBku9QdNrq_NlbybGbP72nI_Hk8XFMTmwumzwZKdD8nw7ebq5D6aPdw8319Mg54loA6O0UAIy1MpCKEOBIcsExohKSBmpHCFCCzE3CBnwKLKQiNDI0ILMleRiSM62uWvv3jps2nTlOl_3lSkHkMCYgrinLrdUkxftz8x07YtK-00KLP0-OYV0d_J_8Lvzv2C6NlZ8AT57fQE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>2116100718</pqid></control><display><type>conference_proceeding</type><title>Numerical simulation of flow around the NREL S826 airfoil at moderate Reynolds number using delayed detached Eddy simulation (DDES)</title><source>AIP Journals Complete</source><creator>Prytz, Erik R. ; Huuse, Øyvind ; Müller, Bernhard ; Bartl, Jan ; Sætran, Lars Roar</creator><contributor>Simos, Theodore ; Tsitouras, Charalambos</contributor><creatorcontrib>Prytz, Erik R. ; Huuse, Øyvind ; Müller, Bernhard ; Bartl, Jan ; Sætran, Lars Roar ; Simos, Theodore ; Tsitouras, Charalambos</creatorcontrib><description>Turbulent flow at Reynolds numbers 5 · 10 4 to 10 6 around the NREL S826 airfoil used for wind turbine blades is simulated using delayed detached eddy simulation (DDES). The 3D domain is built as a replica of the low speed wind tunnel at the Norwegian University of Science and Technology (NTNU) with the wind tunnel walls considered as slip walls. The subgrid turbulent kinetic energy is used to model the sub-grid scale in the large eddy simulation (LES) part of DDES. Different Reynoldsaveraged Navier-Stokes (RANS) models are tested in ANSYS Fluent. The realizable k - ∈ model as the RANS model in DDES is found to yield the best agreement of simulated pressure distributions with the experimental data both from NTNU and the Technical University of Denmark (DTU), the latter for a shorter spanwise domain. The present DDES results are in excellent agreement with LES results from DTU. Since DDES requires much fewer cells in the RANS region near the wing surface than LES, DDES is computationally much more efficient than LES. Whereas DDES is able to predict lift and drag in close agreement with experiment up to stall, pure 2D RANS simulations fail near stall. After testing different numerical settings, time step sizes and grids for DDES, a Reynolds number study is conducted. Near stall, separated flow structures, so-called stall cells, are observed in the DDES results.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/1.4992769</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Aerodynamics ; Computational fluid dynamics ; Computer simulation ; Detached eddy simulation ; Flow separation ; Fluid flow ; Kinetic energy ; Large eddy simulation ; Low speed wind tunnels ; Mathematical models ; Reynolds number ; Simulation ; Stalling ; Turbine blades ; Turbulent flow ; Vortices ; Wind tunnel walls ; Wind turbines</subject><ispartof>AIP conference proceedings, 2017, Vol.1863 (1)</ispartof><rights>Author(s)</rights><rights>2017 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-d7a3731bea7f14643e40b3e8ee736657ce15ef182de1b1255f1934d64f16c7623</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/acp/article-lookup/doi/10.1063/1.4992769$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>309,310,314,776,780,785,786,790,4498,23909,23910,25118,27901,27902,76127</link.rule.ids></links><search><contributor>Simos, Theodore</contributor><contributor>Tsitouras, Charalambos</contributor><creatorcontrib>Prytz, Erik R.</creatorcontrib><creatorcontrib>Huuse, Øyvind</creatorcontrib><creatorcontrib>Müller, Bernhard</creatorcontrib><creatorcontrib>Bartl, Jan</creatorcontrib><creatorcontrib>Sætran, Lars Roar</creatorcontrib><title>Numerical simulation of flow around the NREL S826 airfoil at moderate Reynolds number using delayed detached Eddy simulation (DDES)</title><title>AIP conference proceedings</title><description>Turbulent flow at Reynolds numbers 5 · 10 4 to 10 6 around the NREL S826 airfoil used for wind turbine blades is simulated using delayed detached eddy simulation (DDES). The 3D domain is built as a replica of the low speed wind tunnel at the Norwegian University of Science and Technology (NTNU) with the wind tunnel walls considered as slip walls. The subgrid turbulent kinetic energy is used to model the sub-grid scale in the large eddy simulation (LES) part of DDES. Different Reynoldsaveraged Navier-Stokes (RANS) models are tested in ANSYS Fluent. The realizable k - ∈ model as the RANS model in DDES is found to yield the best agreement of simulated pressure distributions with the experimental data both from NTNU and the Technical University of Denmark (DTU), the latter for a shorter spanwise domain. The present DDES results are in excellent agreement with LES results from DTU. Since DDES requires much fewer cells in the RANS region near the wing surface than LES, DDES is computationally much more efficient than LES. Whereas DDES is able to predict lift and drag in close agreement with experiment up to stall, pure 2D RANS simulations fail near stall. After testing different numerical settings, time step sizes and grids for DDES, a Reynolds number study is conducted. Near stall, separated flow structures, so-called stall cells, are observed in the DDES results.</description><subject>Aerodynamics</subject><subject>Computational fluid dynamics</subject><subject>Computer simulation</subject><subject>Detached eddy simulation</subject><subject>Flow separation</subject><subject>Fluid flow</subject><subject>Kinetic energy</subject><subject>Large eddy simulation</subject><subject>Low speed wind tunnels</subject><subject>Mathematical models</subject><subject>Reynolds number</subject><subject>Simulation</subject><subject>Stalling</subject><subject>Turbine blades</subject><subject>Turbulent flow</subject><subject>Vortices</subject><subject>Wind tunnel walls</subject><subject>Wind turbines</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2017</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNp9kE1Lw0AYhBdRsFYP_oMFLyqk7rub7CZHsfUDSoVWwVvYZN-1KUm2bhKlZ_-40Rb05Gnm8DAzDCGnwEbApLiCUZgkXMlkjwwgiiBQEuQ-GTCWhAEPxcshOWqaFWM8USoekM9ZV6Evcl3Spqi6UreFq6mz1Jbug2rvutrQdol0Np9M6SLmkurCW1eUVLe0cga9bpHOcVO70jS07qoMPe2aon6lBku9QdNrq_NlbybGbP72nI_Hk8XFMTmwumzwZKdD8nw7ebq5D6aPdw8319Mg54loA6O0UAIy1MpCKEOBIcsExohKSBmpHCFCCzE3CBnwKLKQiNDI0ILMleRiSM62uWvv3jps2nTlOl_3lSkHkMCYgrinLrdUkxftz8x07YtK-00KLP0-OYV0d_J_8Lvzv2C6NlZ8AT57fQE</recordid><startdate>20170721</startdate><enddate>20170721</enddate><creator>Prytz, Erik R.</creator><creator>Huuse, Øyvind</creator><creator>Müller, Bernhard</creator><creator>Bartl, Jan</creator><creator>Sætran, Lars Roar</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20170721</creationdate><title>Numerical simulation of flow around the NREL S826 airfoil at moderate Reynolds number using delayed detached Eddy simulation (DDES)</title><author>Prytz, Erik R. ; Huuse, Øyvind ; Müller, Bernhard ; Bartl, Jan ; Sætran, Lars Roar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-d7a3731bea7f14643e40b3e8ee736657ce15ef182de1b1255f1934d64f16c7623</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Aerodynamics</topic><topic>Computational fluid dynamics</topic><topic>Computer simulation</topic><topic>Detached eddy simulation</topic><topic>Flow separation</topic><topic>Fluid flow</topic><topic>Kinetic energy</topic><topic>Large eddy simulation</topic><topic>Low speed wind tunnels</topic><topic>Mathematical models</topic><topic>Reynolds number</topic><topic>Simulation</topic><topic>Stalling</topic><topic>Turbine blades</topic><topic>Turbulent flow</topic><topic>Vortices</topic><topic>Wind tunnel walls</topic><topic>Wind turbines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Prytz, Erik R.</creatorcontrib><creatorcontrib>Huuse, Øyvind</creatorcontrib><creatorcontrib>Müller, Bernhard</creatorcontrib><creatorcontrib>Bartl, Jan</creatorcontrib><creatorcontrib>Sætran, Lars Roar</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Prytz, Erik R.</au><au>Huuse, Øyvind</au><au>Müller, Bernhard</au><au>Bartl, Jan</au><au>Sætran, Lars Roar</au><au>Simos, Theodore</au><au>Tsitouras, Charalambos</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Numerical simulation of flow around the NREL S826 airfoil at moderate Reynolds number using delayed detached Eddy simulation (DDES)</atitle><btitle>AIP conference proceedings</btitle><date>2017-07-21</date><risdate>2017</risdate><volume>1863</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>Turbulent flow at Reynolds numbers 5 · 10 4 to 10 6 around the NREL S826 airfoil used for wind turbine blades is simulated using delayed detached eddy simulation (DDES). The 3D domain is built as a replica of the low speed wind tunnel at the Norwegian University of Science and Technology (NTNU) with the wind tunnel walls considered as slip walls. The subgrid turbulent kinetic energy is used to model the sub-grid scale in the large eddy simulation (LES) part of DDES. Different Reynoldsaveraged Navier-Stokes (RANS) models are tested in ANSYS Fluent. The realizable k - ∈ model as the RANS model in DDES is found to yield the best agreement of simulated pressure distributions with the experimental data both from NTNU and the Technical University of Denmark (DTU), the latter for a shorter spanwise domain. The present DDES results are in excellent agreement with LES results from DTU. Since DDES requires much fewer cells in the RANS region near the wing surface than LES, DDES is computationally much more efficient than LES. Whereas DDES is able to predict lift and drag in close agreement with experiment up to stall, pure 2D RANS simulations fail near stall. After testing different numerical settings, time step sizes and grids for DDES, a Reynolds number study is conducted. Near stall, separated flow structures, so-called stall cells, are observed in the DDES results.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.4992769</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0094-243X
ispartof AIP conference proceedings, 2017, Vol.1863 (1)
issn 0094-243X
1551-7616
language eng
recordid cdi_proquest_journals_2116100718
source AIP Journals Complete
subjects Aerodynamics
Computational fluid dynamics
Computer simulation
Detached eddy simulation
Flow separation
Fluid flow
Kinetic energy
Large eddy simulation
Low speed wind tunnels
Mathematical models
Reynolds number
Simulation
Stalling
Turbine blades
Turbulent flow
Vortices
Wind tunnel walls
Wind turbines
title Numerical simulation of flow around the NREL S826 airfoil at moderate Reynolds number using delayed detached Eddy simulation (DDES)
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T15%3A02%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Numerical%20simulation%20of%20flow%20around%20the%20NREL%20S826%20airfoil%20at%20moderate%20Reynolds%20number%20using%20delayed%20detached%20Eddy%20simulation%20(DDES)&rft.btitle=AIP%20conference%20proceedings&rft.au=Prytz,%20Erik%20R.&rft.date=2017-07-21&rft.volume=1863&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/1.4992769&rft_dat=%3Cproquest_scita%3E2116100718%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2116100718&rft_id=info:pmid/&rfr_iscdi=true