Numerical simulation of flow around the NREL S826 airfoil at moderate Reynolds number using delayed detached Eddy simulation (DDES)
Turbulent flow at Reynolds numbers 5 · 10 4 to 10 6 around the NREL S826 airfoil used for wind turbine blades is simulated using delayed detached eddy simulation (DDES). The 3D domain is built as a replica of the low speed wind tunnel at the Norwegian University of Science and Technology (NTNU) with...
Gespeichert in:
Hauptverfasser: | , , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | |
container_title | |
container_volume | 1863 |
creator | Prytz, Erik R. Huuse, Øyvind Müller, Bernhard Bartl, Jan Sætran, Lars Roar |
description | Turbulent flow at Reynolds numbers 5 · 10
4
to 10
6
around the NREL S826 airfoil used for wind turbine blades is simulated using delayed detached eddy simulation (DDES). The 3D domain is built as a replica of the low speed wind tunnel at the Norwegian University of Science and Technology (NTNU) with the wind tunnel walls considered as slip walls. The subgrid turbulent kinetic energy is used to model the sub-grid scale in the large eddy simulation (LES) part of DDES. Different Reynoldsaveraged Navier-Stokes (RANS) models are tested in ANSYS Fluent. The realizable k - ∈ model as the RANS model in DDES is found to yield the best agreement of simulated pressure distributions with the experimental data both from NTNU and the Technical University of Denmark (DTU), the latter for a shorter spanwise domain. The present DDES results are in excellent agreement with LES results from DTU. Since DDES requires much fewer cells in the RANS region near the wing surface than LES, DDES is computationally much more efficient than LES. Whereas DDES is able to predict lift and drag in close agreement with experiment up to stall, pure 2D RANS simulations fail near stall. After testing different numerical settings, time step sizes and grids for DDES, a Reynolds number study is conducted. Near stall, separated flow structures, so-called stall cells, are observed in the DDES results. |
doi_str_mv | 10.1063/1.4992769 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_journals_2116100718</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2116100718</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-d7a3731bea7f14643e40b3e8ee736657ce15ef182de1b1255f1934d64f16c7623</originalsourceid><addsrcrecordid>eNp9kE1Lw0AYhBdRsFYP_oMFLyqk7rub7CZHsfUDSoVWwVvYZN-1KUm2bhKlZ_-40Rb05Gnm8DAzDCGnwEbApLiCUZgkXMlkjwwgiiBQEuQ-GTCWhAEPxcshOWqaFWM8USoekM9ZV6Evcl3Spqi6UreFq6mz1Jbug2rvutrQdol0Np9M6SLmkurCW1eUVLe0cga9bpHOcVO70jS07qoMPe2aon6lBku9QdNrq_NlbybGbP72nI_Hk8XFMTmwumzwZKdD8nw7ebq5D6aPdw8319Mg54loA6O0UAIy1MpCKEOBIcsExohKSBmpHCFCCzE3CBnwKLKQiNDI0ILMleRiSM62uWvv3jps2nTlOl_3lSkHkMCYgrinLrdUkxftz8x07YtK-00KLP0-OYV0d_J_8Lvzv2C6NlZ8AT57fQE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>2116100718</pqid></control><display><type>conference_proceeding</type><title>Numerical simulation of flow around the NREL S826 airfoil at moderate Reynolds number using delayed detached Eddy simulation (DDES)</title><source>AIP Journals Complete</source><creator>Prytz, Erik R. ; Huuse, Øyvind ; Müller, Bernhard ; Bartl, Jan ; Sætran, Lars Roar</creator><contributor>Simos, Theodore ; Tsitouras, Charalambos</contributor><creatorcontrib>Prytz, Erik R. ; Huuse, Øyvind ; Müller, Bernhard ; Bartl, Jan ; Sætran, Lars Roar ; Simos, Theodore ; Tsitouras, Charalambos</creatorcontrib><description>Turbulent flow at Reynolds numbers 5 · 10
4
to 10
6
around the NREL S826 airfoil used for wind turbine blades is simulated using delayed detached eddy simulation (DDES). The 3D domain is built as a replica of the low speed wind tunnel at the Norwegian University of Science and Technology (NTNU) with the wind tunnel walls considered as slip walls. The subgrid turbulent kinetic energy is used to model the sub-grid scale in the large eddy simulation (LES) part of DDES. Different Reynoldsaveraged Navier-Stokes (RANS) models are tested in ANSYS Fluent. The realizable k - ∈ model as the RANS model in DDES is found to yield the best agreement of simulated pressure distributions with the experimental data both from NTNU and the Technical University of Denmark (DTU), the latter for a shorter spanwise domain. The present DDES results are in excellent agreement with LES results from DTU. Since DDES requires much fewer cells in the RANS region near the wing surface than LES, DDES is computationally much more efficient than LES. Whereas DDES is able to predict lift and drag in close agreement with experiment up to stall, pure 2D RANS simulations fail near stall. After testing different numerical settings, time step sizes and grids for DDES, a Reynolds number study is conducted. Near stall, separated flow structures, so-called stall cells, are observed in the DDES results.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/1.4992769</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Aerodynamics ; Computational fluid dynamics ; Computer simulation ; Detached eddy simulation ; Flow separation ; Fluid flow ; Kinetic energy ; Large eddy simulation ; Low speed wind tunnels ; Mathematical models ; Reynolds number ; Simulation ; Stalling ; Turbine blades ; Turbulent flow ; Vortices ; Wind tunnel walls ; Wind turbines</subject><ispartof>AIP conference proceedings, 2017, Vol.1863 (1)</ispartof><rights>Author(s)</rights><rights>2017 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-d7a3731bea7f14643e40b3e8ee736657ce15ef182de1b1255f1934d64f16c7623</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/acp/article-lookup/doi/10.1063/1.4992769$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>309,310,314,776,780,785,786,790,4498,23909,23910,25118,27901,27902,76127</link.rule.ids></links><search><contributor>Simos, Theodore</contributor><contributor>Tsitouras, Charalambos</contributor><creatorcontrib>Prytz, Erik R.</creatorcontrib><creatorcontrib>Huuse, Øyvind</creatorcontrib><creatorcontrib>Müller, Bernhard</creatorcontrib><creatorcontrib>Bartl, Jan</creatorcontrib><creatorcontrib>Sætran, Lars Roar</creatorcontrib><title>Numerical simulation of flow around the NREL S826 airfoil at moderate Reynolds number using delayed detached Eddy simulation (DDES)</title><title>AIP conference proceedings</title><description>Turbulent flow at Reynolds numbers 5 · 10
4
to 10
6
around the NREL S826 airfoil used for wind turbine blades is simulated using delayed detached eddy simulation (DDES). The 3D domain is built as a replica of the low speed wind tunnel at the Norwegian University of Science and Technology (NTNU) with the wind tunnel walls considered as slip walls. The subgrid turbulent kinetic energy is used to model the sub-grid scale in the large eddy simulation (LES) part of DDES. Different Reynoldsaveraged Navier-Stokes (RANS) models are tested in ANSYS Fluent. The realizable k - ∈ model as the RANS model in DDES is found to yield the best agreement of simulated pressure distributions with the experimental data both from NTNU and the Technical University of Denmark (DTU), the latter for a shorter spanwise domain. The present DDES results are in excellent agreement with LES results from DTU. Since DDES requires much fewer cells in the RANS region near the wing surface than LES, DDES is computationally much more efficient than LES. Whereas DDES is able to predict lift and drag in close agreement with experiment up to stall, pure 2D RANS simulations fail near stall. After testing different numerical settings, time step sizes and grids for DDES, a Reynolds number study is conducted. Near stall, separated flow structures, so-called stall cells, are observed in the DDES results.</description><subject>Aerodynamics</subject><subject>Computational fluid dynamics</subject><subject>Computer simulation</subject><subject>Detached eddy simulation</subject><subject>Flow separation</subject><subject>Fluid flow</subject><subject>Kinetic energy</subject><subject>Large eddy simulation</subject><subject>Low speed wind tunnels</subject><subject>Mathematical models</subject><subject>Reynolds number</subject><subject>Simulation</subject><subject>Stalling</subject><subject>Turbine blades</subject><subject>Turbulent flow</subject><subject>Vortices</subject><subject>Wind tunnel walls</subject><subject>Wind turbines</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2017</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNp9kE1Lw0AYhBdRsFYP_oMFLyqk7rub7CZHsfUDSoVWwVvYZN-1KUm2bhKlZ_-40Rb05Gnm8DAzDCGnwEbApLiCUZgkXMlkjwwgiiBQEuQ-GTCWhAEPxcshOWqaFWM8USoekM9ZV6Evcl3Spqi6UreFq6mz1Jbug2rvutrQdol0Np9M6SLmkurCW1eUVLe0cga9bpHOcVO70jS07qoMPe2aon6lBku9QdNrq_NlbybGbP72nI_Hk8XFMTmwumzwZKdD8nw7ebq5D6aPdw8319Mg54loA6O0UAIy1MpCKEOBIcsExohKSBmpHCFCCzE3CBnwKLKQiNDI0ILMleRiSM62uWvv3jps2nTlOl_3lSkHkMCYgrinLrdUkxftz8x07YtK-00KLP0-OYV0d_J_8Lvzv2C6NlZ8AT57fQE</recordid><startdate>20170721</startdate><enddate>20170721</enddate><creator>Prytz, Erik R.</creator><creator>Huuse, Øyvind</creator><creator>Müller, Bernhard</creator><creator>Bartl, Jan</creator><creator>Sætran, Lars Roar</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20170721</creationdate><title>Numerical simulation of flow around the NREL S826 airfoil at moderate Reynolds number using delayed detached Eddy simulation (DDES)</title><author>Prytz, Erik R. ; Huuse, Øyvind ; Müller, Bernhard ; Bartl, Jan ; Sætran, Lars Roar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-d7a3731bea7f14643e40b3e8ee736657ce15ef182de1b1255f1934d64f16c7623</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Aerodynamics</topic><topic>Computational fluid dynamics</topic><topic>Computer simulation</topic><topic>Detached eddy simulation</topic><topic>Flow separation</topic><topic>Fluid flow</topic><topic>Kinetic energy</topic><topic>Large eddy simulation</topic><topic>Low speed wind tunnels</topic><topic>Mathematical models</topic><topic>Reynolds number</topic><topic>Simulation</topic><topic>Stalling</topic><topic>Turbine blades</topic><topic>Turbulent flow</topic><topic>Vortices</topic><topic>Wind tunnel walls</topic><topic>Wind turbines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Prytz, Erik R.</creatorcontrib><creatorcontrib>Huuse, Øyvind</creatorcontrib><creatorcontrib>Müller, Bernhard</creatorcontrib><creatorcontrib>Bartl, Jan</creatorcontrib><creatorcontrib>Sætran, Lars Roar</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Prytz, Erik R.</au><au>Huuse, Øyvind</au><au>Müller, Bernhard</au><au>Bartl, Jan</au><au>Sætran, Lars Roar</au><au>Simos, Theodore</au><au>Tsitouras, Charalambos</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Numerical simulation of flow around the NREL S826 airfoil at moderate Reynolds number using delayed detached Eddy simulation (DDES)</atitle><btitle>AIP conference proceedings</btitle><date>2017-07-21</date><risdate>2017</risdate><volume>1863</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>Turbulent flow at Reynolds numbers 5 · 10
4
to 10
6
around the NREL S826 airfoil used for wind turbine blades is simulated using delayed detached eddy simulation (DDES). The 3D domain is built as a replica of the low speed wind tunnel at the Norwegian University of Science and Technology (NTNU) with the wind tunnel walls considered as slip walls. The subgrid turbulent kinetic energy is used to model the sub-grid scale in the large eddy simulation (LES) part of DDES. Different Reynoldsaveraged Navier-Stokes (RANS) models are tested in ANSYS Fluent. The realizable k - ∈ model as the RANS model in DDES is found to yield the best agreement of simulated pressure distributions with the experimental data both from NTNU and the Technical University of Denmark (DTU), the latter for a shorter spanwise domain. The present DDES results are in excellent agreement with LES results from DTU. Since DDES requires much fewer cells in the RANS region near the wing surface than LES, DDES is computationally much more efficient than LES. Whereas DDES is able to predict lift and drag in close agreement with experiment up to stall, pure 2D RANS simulations fail near stall. After testing different numerical settings, time step sizes and grids for DDES, a Reynolds number study is conducted. Near stall, separated flow structures, so-called stall cells, are observed in the DDES results.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.4992769</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0094-243X |
ispartof | AIP conference proceedings, 2017, Vol.1863 (1) |
issn | 0094-243X 1551-7616 |
language | eng |
recordid | cdi_proquest_journals_2116100718 |
source | AIP Journals Complete |
subjects | Aerodynamics Computational fluid dynamics Computer simulation Detached eddy simulation Flow separation Fluid flow Kinetic energy Large eddy simulation Low speed wind tunnels Mathematical models Reynolds number Simulation Stalling Turbine blades Turbulent flow Vortices Wind tunnel walls Wind turbines |
title | Numerical simulation of flow around the NREL S826 airfoil at moderate Reynolds number using delayed detached Eddy simulation (DDES) |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T15%3A02%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Numerical%20simulation%20of%20flow%20around%20the%20NREL%20S826%20airfoil%20at%20moderate%20Reynolds%20number%20using%20delayed%20detached%20Eddy%20simulation%20(DDES)&rft.btitle=AIP%20conference%20proceedings&rft.au=Prytz,%20Erik%20R.&rft.date=2017-07-21&rft.volume=1863&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/1.4992769&rft_dat=%3Cproquest_scita%3E2116100718%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2116100718&rft_id=info:pmid/&rfr_iscdi=true |