Partitioned RK-type methods for computational fluid dynamics

The simulation of atmospheric motion requires to deal with phenomena on different time scales. This is inherent for systems of hyperbolic type where waves travel each with its own characteristic wave speed. Here, the crucial phenomena are advective waves vs. sound waves. We propose a splitting appro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Wensch, Jörg, Naumann, Andreas
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page
container_title
container_volume 1863
creator Wensch, Jörg
Naumann, Andreas
description The simulation of atmospheric motion requires to deal with phenomena on different time scales. This is inherent for systems of hyperbolic type where waves travel each with its own characteristic wave speed. Here, the crucial phenomena are advective waves vs. sound waves. We propose a splitting approach where the terms responsible for fast and slow waves are easily identified in the governing equations. Partitioned RK-Type methods are taylored to this situation. We have developed methods where the fast waves are treated by a variable number of micro steps where the micro step size is taylored to the stability requirements. Order conditions are derived for the overall integration procedure. This requires the discussion of two cases: Order conditions for arbitrary numbers of micro steps and order conditions for a fixed number of micro steps. We present a first collection of methods which extend our MIS methods where order is established for an infinite number of small steps.
doi_str_mv 10.1063/1.4992495
format Conference Proceeding
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_journals_2116099535</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2116099535</sourcerecordid><originalsourceid>FETCH-LOGICAL-p253t-4cbc184900f36e1ffc9a9dae89992f066d2e5977e00a93c844c91030ff7c17493</originalsourceid><addsrcrecordid>eNp9kEtLAzEUhYMoWKsL_8GAO2HqzeQxc8GNFF9YUETBXYh54JROMyYZof_eKS24c3U23zl8HELOKcwoSHZFZxyx4igOyIQKQctaUnlIJgDIy4qzj2NyktISoMK6bibk-kXH3OY2rJ0tXp_KvOld0bn8FWwqfIiFCV0_ZL0l9Krwq6G1hd2sddeadEqOvF4ld7bPKXm_u32bP5SL5_vH-c2i7CvBcsnNp6ENRwDPpKPeG9RotWtwVPUgpa2cGHUcgEZmGs4NUmDgfW1ozZFNycVut4_he3Apq2UY4uiTVEWpBETBxEhd7qhk2p2w6mPb6bhRPyEqqvbPqN76_2AKanvlX4H9AgpWZOI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>2116099535</pqid></control><display><type>conference_proceeding</type><title>Partitioned RK-type methods for computational fluid dynamics</title><source>AIP Journals</source><creator>Wensch, Jörg ; Naumann, Andreas</creator><contributor>Simos, Theodore ; Tsitouras, Charalambos</contributor><creatorcontrib>Wensch, Jörg ; Naumann, Andreas ; Simos, Theodore ; Tsitouras, Charalambos</creatorcontrib><description>The simulation of atmospheric motion requires to deal with phenomena on different time scales. This is inherent for systems of hyperbolic type where waves travel each with its own characteristic wave speed. Here, the crucial phenomena are advective waves vs. sound waves. We propose a splitting approach where the terms responsible for fast and slow waves are easily identified in the governing equations. Partitioned RK-Type methods are taylored to this situation. We have developed methods where the fast waves are treated by a variable number of micro steps where the micro step size is taylored to the stability requirements. Order conditions are derived for the overall integration procedure. This requires the discussion of two cases: Order conditions for arbitrary numbers of micro steps and order conditions for a fixed number of micro steps. We present a first collection of methods which extend our MIS methods where order is established for an infinite number of small steps.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/1.4992495</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Computational fluid dynamics ; Computer simulation ; Identification methods ; Sound waves</subject><ispartof>AIP conference proceedings, 2017, Vol.1863 (1)</ispartof><rights>Author(s)</rights><rights>2017 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/acp/article-lookup/doi/10.1063/1.4992495$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>309,310,314,780,784,789,790,794,4509,23928,23929,25138,27922,27923,76154</link.rule.ids></links><search><contributor>Simos, Theodore</contributor><contributor>Tsitouras, Charalambos</contributor><creatorcontrib>Wensch, Jörg</creatorcontrib><creatorcontrib>Naumann, Andreas</creatorcontrib><title>Partitioned RK-type methods for computational fluid dynamics</title><title>AIP conference proceedings</title><description>The simulation of atmospheric motion requires to deal with phenomena on different time scales. This is inherent for systems of hyperbolic type where waves travel each with its own characteristic wave speed. Here, the crucial phenomena are advective waves vs. sound waves. We propose a splitting approach where the terms responsible for fast and slow waves are easily identified in the governing equations. Partitioned RK-Type methods are taylored to this situation. We have developed methods where the fast waves are treated by a variable number of micro steps where the micro step size is taylored to the stability requirements. Order conditions are derived for the overall integration procedure. This requires the discussion of two cases: Order conditions for arbitrary numbers of micro steps and order conditions for a fixed number of micro steps. We present a first collection of methods which extend our MIS methods where order is established for an infinite number of small steps.</description><subject>Computational fluid dynamics</subject><subject>Computer simulation</subject><subject>Identification methods</subject><subject>Sound waves</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2017</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNp9kEtLAzEUhYMoWKsL_8GAO2HqzeQxc8GNFF9YUETBXYh54JROMyYZof_eKS24c3U23zl8HELOKcwoSHZFZxyx4igOyIQKQctaUnlIJgDIy4qzj2NyktISoMK6bibk-kXH3OY2rJ0tXp_KvOld0bn8FWwqfIiFCV0_ZL0l9Krwq6G1hd2sddeadEqOvF4ld7bPKXm_u32bP5SL5_vH-c2i7CvBcsnNp6ENRwDPpKPeG9RotWtwVPUgpa2cGHUcgEZmGs4NUmDgfW1ozZFNycVut4_he3Apq2UY4uiTVEWpBETBxEhd7qhk2p2w6mPb6bhRPyEqqvbPqN76_2AKanvlX4H9AgpWZOI</recordid><startdate>20170721</startdate><enddate>20170721</enddate><creator>Wensch, Jörg</creator><creator>Naumann, Andreas</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20170721</creationdate><title>Partitioned RK-type methods for computational fluid dynamics</title><author>Wensch, Jörg ; Naumann, Andreas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p253t-4cbc184900f36e1ffc9a9dae89992f066d2e5977e00a93c844c91030ff7c17493</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Computational fluid dynamics</topic><topic>Computer simulation</topic><topic>Identification methods</topic><topic>Sound waves</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wensch, Jörg</creatorcontrib><creatorcontrib>Naumann, Andreas</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wensch, Jörg</au><au>Naumann, Andreas</au><au>Simos, Theodore</au><au>Tsitouras, Charalambos</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Partitioned RK-type methods for computational fluid dynamics</atitle><btitle>AIP conference proceedings</btitle><date>2017-07-21</date><risdate>2017</risdate><volume>1863</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>The simulation of atmospheric motion requires to deal with phenomena on different time scales. This is inherent for systems of hyperbolic type where waves travel each with its own characteristic wave speed. Here, the crucial phenomena are advective waves vs. sound waves. We propose a splitting approach where the terms responsible for fast and slow waves are easily identified in the governing equations. Partitioned RK-Type methods are taylored to this situation. We have developed methods where the fast waves are treated by a variable number of micro steps where the micro step size is taylored to the stability requirements. Order conditions are derived for the overall integration procedure. This requires the discussion of two cases: Order conditions for arbitrary numbers of micro steps and order conditions for a fixed number of micro steps. We present a first collection of methods which extend our MIS methods where order is established for an infinite number of small steps.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.4992495</doi><tpages>3</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0094-243X
ispartof AIP conference proceedings, 2017, Vol.1863 (1)
issn 0094-243X
1551-7616
language eng
recordid cdi_proquest_journals_2116099535
source AIP Journals
subjects Computational fluid dynamics
Computer simulation
Identification methods
Sound waves
title Partitioned RK-type methods for computational fluid dynamics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T17%3A22%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Partitioned%20RK-type%20methods%20for%20computational%20fluid%20dynamics&rft.btitle=AIP%20conference%20proceedings&rft.au=Wensch,%20J%C3%B6rg&rft.date=2017-07-21&rft.volume=1863&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/1.4992495&rft_dat=%3Cproquest_scita%3E2116099535%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2116099535&rft_id=info:pmid/&rfr_iscdi=true