Partitioned RK-type methods for computational fluid dynamics
The simulation of atmospheric motion requires to deal with phenomena on different time scales. This is inherent for systems of hyperbolic type where waves travel each with its own characteristic wave speed. Here, the crucial phenomena are advective waves vs. sound waves. We propose a splitting appro...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | |
container_title | |
container_volume | 1863 |
creator | Wensch, Jörg Naumann, Andreas |
description | The simulation of atmospheric motion requires to deal with phenomena on different time scales. This is inherent for systems of hyperbolic type where waves travel each with its own characteristic wave speed. Here, the crucial phenomena are advective waves vs. sound waves. We propose a splitting approach where the terms responsible for fast and slow waves are easily identified in the governing equations. Partitioned RK-Type methods are taylored to this situation. We have developed methods where the fast waves are treated by a variable number of micro steps where the micro step size is taylored to the stability requirements. Order conditions are derived for the overall integration procedure. This requires the discussion of two cases: Order conditions for arbitrary numbers of micro steps and order conditions for a fixed number of micro steps. We present a first collection of methods which extend our MIS methods where order is established for an infinite number of small steps. |
doi_str_mv | 10.1063/1.4992495 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_journals_2116099535</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2116099535</sourcerecordid><originalsourceid>FETCH-LOGICAL-p253t-4cbc184900f36e1ffc9a9dae89992f066d2e5977e00a93c844c91030ff7c17493</originalsourceid><addsrcrecordid>eNp9kEtLAzEUhYMoWKsL_8GAO2HqzeQxc8GNFF9YUETBXYh54JROMyYZof_eKS24c3U23zl8HELOKcwoSHZFZxyx4igOyIQKQctaUnlIJgDIy4qzj2NyktISoMK6bibk-kXH3OY2rJ0tXp_KvOld0bn8FWwqfIiFCV0_ZL0l9Krwq6G1hd2sddeadEqOvF4ld7bPKXm_u32bP5SL5_vH-c2i7CvBcsnNp6ENRwDPpKPeG9RotWtwVPUgpa2cGHUcgEZmGs4NUmDgfW1ozZFNycVut4_he3Apq2UY4uiTVEWpBETBxEhd7qhk2p2w6mPb6bhRPyEqqvbPqN76_2AKanvlX4H9AgpWZOI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>2116099535</pqid></control><display><type>conference_proceeding</type><title>Partitioned RK-type methods for computational fluid dynamics</title><source>AIP Journals</source><creator>Wensch, Jörg ; Naumann, Andreas</creator><contributor>Simos, Theodore ; Tsitouras, Charalambos</contributor><creatorcontrib>Wensch, Jörg ; Naumann, Andreas ; Simos, Theodore ; Tsitouras, Charalambos</creatorcontrib><description>The simulation of atmospheric motion requires to deal with phenomena on different time scales. This is inherent for systems of hyperbolic type where waves travel each with its own characteristic wave speed. Here, the crucial phenomena are advective waves vs. sound waves. We propose a splitting approach where the terms responsible for fast and slow waves are easily identified in the governing equations. Partitioned RK-Type methods are taylored to this situation. We have developed methods where the fast waves are treated by a variable number of micro steps where the micro step size is taylored to the stability requirements. Order conditions are derived for the overall integration procedure. This requires the discussion of two cases: Order conditions for arbitrary numbers of micro steps and order conditions for a fixed number of micro steps. We present a first collection of methods which extend our MIS methods where order is established for an infinite number of small steps.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/1.4992495</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Computational fluid dynamics ; Computer simulation ; Identification methods ; Sound waves</subject><ispartof>AIP conference proceedings, 2017, Vol.1863 (1)</ispartof><rights>Author(s)</rights><rights>2017 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/acp/article-lookup/doi/10.1063/1.4992495$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>309,310,314,780,784,789,790,794,4509,23928,23929,25138,27922,27923,76154</link.rule.ids></links><search><contributor>Simos, Theodore</contributor><contributor>Tsitouras, Charalambos</contributor><creatorcontrib>Wensch, Jörg</creatorcontrib><creatorcontrib>Naumann, Andreas</creatorcontrib><title>Partitioned RK-type methods for computational fluid dynamics</title><title>AIP conference proceedings</title><description>The simulation of atmospheric motion requires to deal with phenomena on different time scales. This is inherent for systems of hyperbolic type where waves travel each with its own characteristic wave speed. Here, the crucial phenomena are advective waves vs. sound waves. We propose a splitting approach where the terms responsible for fast and slow waves are easily identified in the governing equations. Partitioned RK-Type methods are taylored to this situation. We have developed methods where the fast waves are treated by a variable number of micro steps where the micro step size is taylored to the stability requirements. Order conditions are derived for the overall integration procedure. This requires the discussion of two cases: Order conditions for arbitrary numbers of micro steps and order conditions for a fixed number of micro steps. We present a first collection of methods which extend our MIS methods where order is established for an infinite number of small steps.</description><subject>Computational fluid dynamics</subject><subject>Computer simulation</subject><subject>Identification methods</subject><subject>Sound waves</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2017</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNp9kEtLAzEUhYMoWKsL_8GAO2HqzeQxc8GNFF9YUETBXYh54JROMyYZof_eKS24c3U23zl8HELOKcwoSHZFZxyx4igOyIQKQctaUnlIJgDIy4qzj2NyktISoMK6bibk-kXH3OY2rJ0tXp_KvOld0bn8FWwqfIiFCV0_ZL0l9Krwq6G1hd2sddeadEqOvF4ld7bPKXm_u32bP5SL5_vH-c2i7CvBcsnNp6ENRwDPpKPeG9RotWtwVPUgpa2cGHUcgEZmGs4NUmDgfW1ozZFNycVut4_he3Apq2UY4uiTVEWpBETBxEhd7qhk2p2w6mPb6bhRPyEqqvbPqN76_2AKanvlX4H9AgpWZOI</recordid><startdate>20170721</startdate><enddate>20170721</enddate><creator>Wensch, Jörg</creator><creator>Naumann, Andreas</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20170721</creationdate><title>Partitioned RK-type methods for computational fluid dynamics</title><author>Wensch, Jörg ; Naumann, Andreas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p253t-4cbc184900f36e1ffc9a9dae89992f066d2e5977e00a93c844c91030ff7c17493</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Computational fluid dynamics</topic><topic>Computer simulation</topic><topic>Identification methods</topic><topic>Sound waves</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wensch, Jörg</creatorcontrib><creatorcontrib>Naumann, Andreas</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wensch, Jörg</au><au>Naumann, Andreas</au><au>Simos, Theodore</au><au>Tsitouras, Charalambos</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Partitioned RK-type methods for computational fluid dynamics</atitle><btitle>AIP conference proceedings</btitle><date>2017-07-21</date><risdate>2017</risdate><volume>1863</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>The simulation of atmospheric motion requires to deal with phenomena on different time scales. This is inherent for systems of hyperbolic type where waves travel each with its own characteristic wave speed. Here, the crucial phenomena are advective waves vs. sound waves. We propose a splitting approach where the terms responsible for fast and slow waves are easily identified in the governing equations. Partitioned RK-Type methods are taylored to this situation. We have developed methods where the fast waves are treated by a variable number of micro steps where the micro step size is taylored to the stability requirements. Order conditions are derived for the overall integration procedure. This requires the discussion of two cases: Order conditions for arbitrary numbers of micro steps and order conditions for a fixed number of micro steps. We present a first collection of methods which extend our MIS methods where order is established for an infinite number of small steps.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.4992495</doi><tpages>3</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0094-243X |
ispartof | AIP conference proceedings, 2017, Vol.1863 (1) |
issn | 0094-243X 1551-7616 |
language | eng |
recordid | cdi_proquest_journals_2116099535 |
source | AIP Journals |
subjects | Computational fluid dynamics Computer simulation Identification methods Sound waves |
title | Partitioned RK-type methods for computational fluid dynamics |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T17%3A22%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Partitioned%20RK-type%20methods%20for%20computational%20fluid%20dynamics&rft.btitle=AIP%20conference%20proceedings&rft.au=Wensch,%20J%C3%B6rg&rft.date=2017-07-21&rft.volume=1863&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/1.4992495&rft_dat=%3Cproquest_scita%3E2116099535%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2116099535&rft_id=info:pmid/&rfr_iscdi=true |