The effects of convergence ratio on the implosion behavior of DT layered inertial confinement fusion capsules
The wetted foam capsule design for inertial confinement fusion capsules, which includes a foam layer wetted with deuterium-tritium liquid, enables layered capsule implosions with a wide range of hot-spot convergence ratios (CR) on the National Ignition Facility. We present a full-scale wetted foam c...
Gespeichert in:
Veröffentlicht in: | Physics of plasmas 2017-07, Vol.24 (7) |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 7 |
container_start_page | |
container_title | Physics of plasmas |
container_volume | 24 |
creator | Haines, Brian M. Yi, S. A. Olson, R. E. Khan, S. F. Kyrala, G. A. Zylstra, A. B. Bradley, P. A. Peterson, R. R. Kline, J. L. Leeper, R. J. Shah, R. C. |
description | The wetted foam capsule design for inertial confinement fusion capsules, which includes a foam layer wetted with deuterium-tritium liquid, enables layered capsule implosions with a wide range of hot-spot convergence ratios (CR) on the National Ignition Facility. We present a full-scale wetted foam capsule design that demonstrates high gain in one-dimensional simulations. In these simulations, increasing the convergence ratio leads to an improved capsule yield due to higher hot-spot temperatures and increased fuel areal density. High-resolution two-dimensional simulations of this design are presented with detailed and well resolved models for the capsule fill tube, support tent, surface roughness, and predicted asymmetries in the x-ray drive. Our modeling of these asymmetries is validated by comparisons with available experimental data. In 2D simulations of the full-scale wetted foam capsule design, jetting caused by the fill tube is prevented by the expansion of the tungsten-doped shell layer due to preheat. While the impacts of surface roughness and predicted asymmetries in the x-ray drive are enhanced by convergence effects, likely underpredicted in 2D at high CR, simulations predict that the capsule is robust to these features. Nevertheless, the design is highly susceptible to the effects of the capsule support tent, which negates all of the one-dimensional benefits of increasing the convergence ratio. Indeed, when the support tent is included in simulations, the yield decreases as the convergence ratio is increased for CR > 20. Nevertheless, the results suggest that the full-scale wetted foam design has the potential to outperform ice layer capsules given currently achievable levels of asymmetries when fielded at low convergence ratios (CR |
doi_str_mv | 10.1063/1.4993065 |
format | Article |
fullrecord | <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_journals_2116093826</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2116093826</sourcerecordid><originalsourceid>FETCH-LOGICAL-c389t-66a6345363f1b6e30c950d35b8c659749fa90631a62807b3d70ef3d66cc6b8553</originalsourceid><addsrcrecordid>eNqd0E1LxDAQBuAiCq4fB_9B0JNC12TTps1R1k9Y8LKCt5CmEzdL29QkXdh_b2oXvHtKBp5M3pkkuSJ4TjCj92SecU4xy4-SGcElTwtWZMfjvcApY9nnaXLm_RZjnLG8nCXtegMItAYVPLIaKdvtwH1BpwA5GYxFtkMhGtP2jfUmVhVs5M5YN_LHNWrkHhzUyHTggpHN2ELHooUuID38PlGy90MD_iI50bLxcHk4z5OP56f18jVdvb-8LR9WqaIlDzGnZDTLKaOaVAwoVjzHNc2rUrGcFxnXksdhiWSLEhcVrQsMmtaMKcWqMs_peXI99bU-GOGVCaA2MVcXxxSEFhmlI7qZUO_s9wA-iK0dXBdziQUhDHNaLlhUt5NSznrvQIvemVa6vSBYjCsXRBxWHu3dZMcfx-V1_8M76_6g6GtNfwDxfI8K</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2116093826</pqid></control><display><type>article</type><title>The effects of convergence ratio on the implosion behavior of DT layered inertial confinement fusion capsules</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Haines, Brian M. ; Yi, S. A. ; Olson, R. E. ; Khan, S. F. ; Kyrala, G. A. ; Zylstra, A. B. ; Bradley, P. A. ; Peterson, R. R. ; Kline, J. L. ; Leeper, R. J. ; Shah, R. C.</creator><creatorcontrib>Haines, Brian M. ; Yi, S. A. ; Olson, R. E. ; Khan, S. F. ; Kyrala, G. A. ; Zylstra, A. B. ; Bradley, P. A. ; Peterson, R. R. ; Kline, J. L. ; Leeper, R. J. ; Shah, R. C. ; Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States) ; Los Alamos National Lab. (LANL), Los Alamos, NM (United States)</creatorcontrib><description>The wetted foam capsule design for inertial confinement fusion capsules, which includes a foam layer wetted with deuterium-tritium liquid, enables layered capsule implosions with a wide range of hot-spot convergence ratios (CR) on the National Ignition Facility. We present a full-scale wetted foam capsule design that demonstrates high gain in one-dimensional simulations. In these simulations, increasing the convergence ratio leads to an improved capsule yield due to higher hot-spot temperatures and increased fuel areal density. High-resolution two-dimensional simulations of this design are presented with detailed and well resolved models for the capsule fill tube, support tent, surface roughness, and predicted asymmetries in the x-ray drive. Our modeling of these asymmetries is validated by comparisons with available experimental data. In 2D simulations of the full-scale wetted foam capsule design, jetting caused by the fill tube is prevented by the expansion of the tungsten-doped shell layer due to preheat. While the impacts of surface roughness and predicted asymmetries in the x-ray drive are enhanced by convergence effects, likely underpredicted in 2D at high CR, simulations predict that the capsule is robust to these features. Nevertheless, the design is highly susceptible to the effects of the capsule support tent, which negates all of the one-dimensional benefits of increasing the convergence ratio. Indeed, when the support tent is included in simulations, the yield decreases as the convergence ratio is increased for CR > 20. Nevertheless, the results suggest that the full-scale wetted foam design has the potential to outperform ice layer capsules given currently achievable levels of asymmetries when fielded at low convergence ratios (CR < 20).</description><identifier>ISSN: 1070-664X</identifier><identifier>EISSN: 1089-7674</identifier><identifier>DOI: 10.1063/1.4993065</identifier><identifier>CODEN: PHPAEN</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>70 PLASMA PHYSICS AND FUSION TECHNOLOGY ; Asymmetry ; CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS ; Computer simulation ; Convergence ; Deuterium ; High gain ; Implosions ; Inertial confinement fusion ; Mathematical models ; Metalloids ; NUCLEAR PHYSICS AND RADIATION PHYSICS ; Optical metrology ; Plasma confinement ; Plasma physics ; Surface roughness ; Tectonophysics ; Tritium ; Tungsten</subject><ispartof>Physics of plasmas, 2017-07, Vol.24 (7)</ispartof><rights>Author(s)</rights><rights>2017 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c389t-66a6345363f1b6e30c950d35b8c659749fa90631a62807b3d70ef3d66cc6b8553</citedby><cites>FETCH-LOGICAL-c389t-66a6345363f1b6e30c950d35b8c659749fa90631a62807b3d70ef3d66cc6b8553</cites><orcidid>0000-0002-3889-7074 ; 0000-0001-6229-6677 ; 0000-0003-3986-620X ; 0000-0003-0489-7479 ; 000000033986620X ; 0000000238897074 ; 0000000304897479 ; 0000000162296677</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/pop/article-lookup/doi/10.1063/1.4993065$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>230,314,780,784,794,885,4512,27924,27925,76384</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1374335$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Haines, Brian M.</creatorcontrib><creatorcontrib>Yi, S. A.</creatorcontrib><creatorcontrib>Olson, R. E.</creatorcontrib><creatorcontrib>Khan, S. F.</creatorcontrib><creatorcontrib>Kyrala, G. A.</creatorcontrib><creatorcontrib>Zylstra, A. B.</creatorcontrib><creatorcontrib>Bradley, P. A.</creatorcontrib><creatorcontrib>Peterson, R. R.</creatorcontrib><creatorcontrib>Kline, J. L.</creatorcontrib><creatorcontrib>Leeper, R. J.</creatorcontrib><creatorcontrib>Shah, R. C.</creatorcontrib><creatorcontrib>Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)</creatorcontrib><creatorcontrib>Los Alamos National Lab. (LANL), Los Alamos, NM (United States)</creatorcontrib><title>The effects of convergence ratio on the implosion behavior of DT layered inertial confinement fusion capsules</title><title>Physics of plasmas</title><description>The wetted foam capsule design for inertial confinement fusion capsules, which includes a foam layer wetted with deuterium-tritium liquid, enables layered capsule implosions with a wide range of hot-spot convergence ratios (CR) on the National Ignition Facility. We present a full-scale wetted foam capsule design that demonstrates high gain in one-dimensional simulations. In these simulations, increasing the convergence ratio leads to an improved capsule yield due to higher hot-spot temperatures and increased fuel areal density. High-resolution two-dimensional simulations of this design are presented with detailed and well resolved models for the capsule fill tube, support tent, surface roughness, and predicted asymmetries in the x-ray drive. Our modeling of these asymmetries is validated by comparisons with available experimental data. In 2D simulations of the full-scale wetted foam capsule design, jetting caused by the fill tube is prevented by the expansion of the tungsten-doped shell layer due to preheat. While the impacts of surface roughness and predicted asymmetries in the x-ray drive are enhanced by convergence effects, likely underpredicted in 2D at high CR, simulations predict that the capsule is robust to these features. Nevertheless, the design is highly susceptible to the effects of the capsule support tent, which negates all of the one-dimensional benefits of increasing the convergence ratio. Indeed, when the support tent is included in simulations, the yield decreases as the convergence ratio is increased for CR > 20. Nevertheless, the results suggest that the full-scale wetted foam design has the potential to outperform ice layer capsules given currently achievable levels of asymmetries when fielded at low convergence ratios (CR < 20).</description><subject>70 PLASMA PHYSICS AND FUSION TECHNOLOGY</subject><subject>Asymmetry</subject><subject>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</subject><subject>Computer simulation</subject><subject>Convergence</subject><subject>Deuterium</subject><subject>High gain</subject><subject>Implosions</subject><subject>Inertial confinement fusion</subject><subject>Mathematical models</subject><subject>Metalloids</subject><subject>NUCLEAR PHYSICS AND RADIATION PHYSICS</subject><subject>Optical metrology</subject><subject>Plasma confinement</subject><subject>Plasma physics</subject><subject>Surface roughness</subject><subject>Tectonophysics</subject><subject>Tritium</subject><subject>Tungsten</subject><issn>1070-664X</issn><issn>1089-7674</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqd0E1LxDAQBuAiCq4fB_9B0JNC12TTps1R1k9Y8LKCt5CmEzdL29QkXdh_b2oXvHtKBp5M3pkkuSJ4TjCj92SecU4xy4-SGcElTwtWZMfjvcApY9nnaXLm_RZjnLG8nCXtegMItAYVPLIaKdvtwH1BpwA5GYxFtkMhGtP2jfUmVhVs5M5YN_LHNWrkHhzUyHTggpHN2ELHooUuID38PlGy90MD_iI50bLxcHk4z5OP56f18jVdvb-8LR9WqaIlDzGnZDTLKaOaVAwoVjzHNc2rUrGcFxnXksdhiWSLEhcVrQsMmtaMKcWqMs_peXI99bU-GOGVCaA2MVcXxxSEFhmlI7qZUO_s9wA-iK0dXBdziQUhDHNaLlhUt5NSznrvQIvemVa6vSBYjCsXRBxWHu3dZMcfx-V1_8M76_6g6GtNfwDxfI8K</recordid><startdate>20170701</startdate><enddate>20170701</enddate><creator>Haines, Brian M.</creator><creator>Yi, S. A.</creator><creator>Olson, R. E.</creator><creator>Khan, S. F.</creator><creator>Kyrala, G. A.</creator><creator>Zylstra, A. B.</creator><creator>Bradley, P. A.</creator><creator>Peterson, R. R.</creator><creator>Kline, J. L.</creator><creator>Leeper, R. J.</creator><creator>Shah, R. C.</creator><general>American Institute of Physics</general><general>American Institute of Physics (AIP)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-3889-7074</orcidid><orcidid>https://orcid.org/0000-0001-6229-6677</orcidid><orcidid>https://orcid.org/0000-0003-3986-620X</orcidid><orcidid>https://orcid.org/0000-0003-0489-7479</orcidid><orcidid>https://orcid.org/000000033986620X</orcidid><orcidid>https://orcid.org/0000000238897074</orcidid><orcidid>https://orcid.org/0000000304897479</orcidid><orcidid>https://orcid.org/0000000162296677</orcidid></search><sort><creationdate>20170701</creationdate><title>The effects of convergence ratio on the implosion behavior of DT layered inertial confinement fusion capsules</title><author>Haines, Brian M. ; Yi, S. A. ; Olson, R. E. ; Khan, S. F. ; Kyrala, G. A. ; Zylstra, A. B. ; Bradley, P. A. ; Peterson, R. R. ; Kline, J. L. ; Leeper, R. J. ; Shah, R. C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c389t-66a6345363f1b6e30c950d35b8c659749fa90631a62807b3d70ef3d66cc6b8553</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>70 PLASMA PHYSICS AND FUSION TECHNOLOGY</topic><topic>Asymmetry</topic><topic>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</topic><topic>Computer simulation</topic><topic>Convergence</topic><topic>Deuterium</topic><topic>High gain</topic><topic>Implosions</topic><topic>Inertial confinement fusion</topic><topic>Mathematical models</topic><topic>Metalloids</topic><topic>NUCLEAR PHYSICS AND RADIATION PHYSICS</topic><topic>Optical metrology</topic><topic>Plasma confinement</topic><topic>Plasma physics</topic><topic>Surface roughness</topic><topic>Tectonophysics</topic><topic>Tritium</topic><topic>Tungsten</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Haines, Brian M.</creatorcontrib><creatorcontrib>Yi, S. A.</creatorcontrib><creatorcontrib>Olson, R. E.</creatorcontrib><creatorcontrib>Khan, S. F.</creatorcontrib><creatorcontrib>Kyrala, G. A.</creatorcontrib><creatorcontrib>Zylstra, A. B.</creatorcontrib><creatorcontrib>Bradley, P. A.</creatorcontrib><creatorcontrib>Peterson, R. R.</creatorcontrib><creatorcontrib>Kline, J. L.</creatorcontrib><creatorcontrib>Leeper, R. J.</creatorcontrib><creatorcontrib>Shah, R. C.</creatorcontrib><creatorcontrib>Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)</creatorcontrib><creatorcontrib>Los Alamos National Lab. (LANL), Los Alamos, NM (United States)</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Physics of plasmas</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Haines, Brian M.</au><au>Yi, S. A.</au><au>Olson, R. E.</au><au>Khan, S. F.</au><au>Kyrala, G. A.</au><au>Zylstra, A. B.</au><au>Bradley, P. A.</au><au>Peterson, R. R.</au><au>Kline, J. L.</au><au>Leeper, R. J.</au><au>Shah, R. C.</au><aucorp>Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)</aucorp><aucorp>Los Alamos National Lab. (LANL), Los Alamos, NM (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The effects of convergence ratio on the implosion behavior of DT layered inertial confinement fusion capsules</atitle><jtitle>Physics of plasmas</jtitle><date>2017-07-01</date><risdate>2017</risdate><volume>24</volume><issue>7</issue><issn>1070-664X</issn><eissn>1089-7674</eissn><coden>PHPAEN</coden><abstract>The wetted foam capsule design for inertial confinement fusion capsules, which includes a foam layer wetted with deuterium-tritium liquid, enables layered capsule implosions with a wide range of hot-spot convergence ratios (CR) on the National Ignition Facility. We present a full-scale wetted foam capsule design that demonstrates high gain in one-dimensional simulations. In these simulations, increasing the convergence ratio leads to an improved capsule yield due to higher hot-spot temperatures and increased fuel areal density. High-resolution two-dimensional simulations of this design are presented with detailed and well resolved models for the capsule fill tube, support tent, surface roughness, and predicted asymmetries in the x-ray drive. Our modeling of these asymmetries is validated by comparisons with available experimental data. In 2D simulations of the full-scale wetted foam capsule design, jetting caused by the fill tube is prevented by the expansion of the tungsten-doped shell layer due to preheat. While the impacts of surface roughness and predicted asymmetries in the x-ray drive are enhanced by convergence effects, likely underpredicted in 2D at high CR, simulations predict that the capsule is robust to these features. Nevertheless, the design is highly susceptible to the effects of the capsule support tent, which negates all of the one-dimensional benefits of increasing the convergence ratio. Indeed, when the support tent is included in simulations, the yield decreases as the convergence ratio is increased for CR > 20. Nevertheless, the results suggest that the full-scale wetted foam design has the potential to outperform ice layer capsules given currently achievable levels of asymmetries when fielded at low convergence ratios (CR < 20).</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.4993065</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-3889-7074</orcidid><orcidid>https://orcid.org/0000-0001-6229-6677</orcidid><orcidid>https://orcid.org/0000-0003-3986-620X</orcidid><orcidid>https://orcid.org/0000-0003-0489-7479</orcidid><orcidid>https://orcid.org/000000033986620X</orcidid><orcidid>https://orcid.org/0000000238897074</orcidid><orcidid>https://orcid.org/0000000304897479</orcidid><orcidid>https://orcid.org/0000000162296677</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1070-664X |
ispartof | Physics of plasmas, 2017-07, Vol.24 (7) |
issn | 1070-664X 1089-7674 |
language | eng |
recordid | cdi_proquest_journals_2116093826 |
source | AIP Journals Complete; Alma/SFX Local Collection |
subjects | 70 PLASMA PHYSICS AND FUSION TECHNOLOGY Asymmetry CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS Computer simulation Convergence Deuterium High gain Implosions Inertial confinement fusion Mathematical models Metalloids NUCLEAR PHYSICS AND RADIATION PHYSICS Optical metrology Plasma confinement Plasma physics Surface roughness Tectonophysics Tritium Tungsten |
title | The effects of convergence ratio on the implosion behavior of DT layered inertial confinement fusion capsules |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T18%3A31%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20effects%20of%20convergence%20ratio%20on%20the%20implosion%20behavior%20of%20DT%20layered%20inertial%20confinement%20fusion%20capsules&rft.jtitle=Physics%20of%20plasmas&rft.au=Haines,%20Brian%20M.&rft.aucorp=Lawrence%20Livermore%20National%20Lab.%20(LLNL),%20Livermore,%20CA%20(United%20States)&rft.date=2017-07-01&rft.volume=24&rft.issue=7&rft.issn=1070-664X&rft.eissn=1089-7674&rft.coden=PHPAEN&rft_id=info:doi/10.1063/1.4993065&rft_dat=%3Cproquest_scita%3E2116093826%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2116093826&rft_id=info:pmid/&rfr_iscdi=true |