Fault detection and isolation for complex system

Fault Detection and Isolation (FDI) is a method to monitor, identify, and pinpoint the type and location of system fault in a complex multiple input multiple output (MIMO) non-linear system. A two wheel robot is used as a complex system in this study. The aim of the research is to construct and desi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Jing, Chan Shi, Bayuaji, Luhur, Samad, R., Mustafa, M., Abdullah, N. R. H., Zain, Z. M., Pebrianti, Dwi
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page
container_title
container_volume 1865
creator Jing, Chan Shi
Bayuaji, Luhur
Samad, R.
Mustafa, M.
Abdullah, N. R. H.
Zain, Z. M.
Pebrianti, Dwi
description Fault Detection and Isolation (FDI) is a method to monitor, identify, and pinpoint the type and location of system fault in a complex multiple input multiple output (MIMO) non-linear system. A two wheel robot is used as a complex system in this study. The aim of the research is to construct and design a Fault Detection and Isolation algorithm. The proposed method for the fault identification is using hybrid technique that combines Kalman filter and Artificial Neural Network (ANN). The Kalman filter is able to recognize the data from the sensors of the system and indicate the fault of the system in the sensor reading. Error prediction is based on the fault magnitude and the time occurrence of fault. Additionally, Artificial Neural Network (ANN) is another algorithm used to determine the type of fault and isolate the fault in the system.
doi_str_mv 10.1063/1.4993392
format Conference Proceeding
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_journals_2116088401</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2116088401</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-ad6ba23e64fe9f5aadf9558c3ba958355d9051e0c271ce381f3179c4b52d19853</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKsH_8GCN2FrJl-bHKXYKhS8KHgL2XzAlt3NusmK_ffWtuDN0zDwvO8MD0K3gBeABX2ABVOKUkXO0Aw4h7ISIM7RDGPFSsLoxyW6SmmLMVFVJWcIr8zU5sL57G1uYl-Y3hVNiq05bCGOhY3d0PrvIu1S9t01ugimTf7mNOfoffX0tnwuN6_rl-XjprRE0VwaJ2pDqBcseBW4MS4ozqWltVFcUs6dwhw8tqQC66mEQKFSltWcOFCS0zm6O_YOY_ycfMp6G6ex35_UBEBgKRmGPXV_pJJt8uFlPYxNZ8ad_oqjBn2yoQcX_oMB6199fwH6A5LLYHk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>2116088401</pqid></control><display><type>conference_proceeding</type><title>Fault detection and isolation for complex system</title><source>AIP Journals Complete</source><creator>Jing, Chan Shi ; Bayuaji, Luhur ; Samad, R. ; Mustafa, M. ; Abdullah, N. R. H. ; Zain, Z. M. ; Pebrianti, Dwi</creator><contributor>Shibatomi, Kazutaka ; Jaafar, Mariatti ; Musa, Mohd Kusairay ; Razak, Khairunisak Abdul ; Hussain, Zuhailawati ; Kian, Tan Wai</contributor><creatorcontrib>Jing, Chan Shi ; Bayuaji, Luhur ; Samad, R. ; Mustafa, M. ; Abdullah, N. R. H. ; Zain, Z. M. ; Pebrianti, Dwi ; Shibatomi, Kazutaka ; Jaafar, Mariatti ; Musa, Mohd Kusairay ; Razak, Khairunisak Abdul ; Hussain, Zuhailawati ; Kian, Tan Wai</creatorcontrib><description>Fault Detection and Isolation (FDI) is a method to monitor, identify, and pinpoint the type and location of system fault in a complex multiple input multiple output (MIMO) non-linear system. A two wheel robot is used as a complex system in this study. The aim of the research is to construct and design a Fault Detection and Isolation algorithm. The proposed method for the fault identification is using hybrid technique that combines Kalman filter and Artificial Neural Network (ANN). The Kalman filter is able to recognize the data from the sensors of the system and indicate the fault of the system in the sensor reading. Error prediction is based on the fault magnitude and the time occurrence of fault. Additionally, Artificial Neural Network (ANN) is another algorithm used to determine the type of fault and isolate the fault in the system.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/1.4993392</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Algorithms ; Artificial neural networks ; Complex systems ; Error detection ; Fault detection ; Kalman filters ; MIMO (control systems) ; Neural networks ; Nonlinear systems</subject><ispartof>AIP conference proceedings, 2017, Vol.1865 (1)</ispartof><rights>Author(s)</rights><rights>2017 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-ad6ba23e64fe9f5aadf9558c3ba958355d9051e0c271ce381f3179c4b52d19853</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/acp/article-lookup/doi/10.1063/1.4993392$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>309,310,314,780,784,789,790,794,4512,23930,23931,25140,27924,27925,76384</link.rule.ids></links><search><contributor>Shibatomi, Kazutaka</contributor><contributor>Jaafar, Mariatti</contributor><contributor>Musa, Mohd Kusairay</contributor><contributor>Razak, Khairunisak Abdul</contributor><contributor>Hussain, Zuhailawati</contributor><contributor>Kian, Tan Wai</contributor><creatorcontrib>Jing, Chan Shi</creatorcontrib><creatorcontrib>Bayuaji, Luhur</creatorcontrib><creatorcontrib>Samad, R.</creatorcontrib><creatorcontrib>Mustafa, M.</creatorcontrib><creatorcontrib>Abdullah, N. R. H.</creatorcontrib><creatorcontrib>Zain, Z. M.</creatorcontrib><creatorcontrib>Pebrianti, Dwi</creatorcontrib><title>Fault detection and isolation for complex system</title><title>AIP conference proceedings</title><description>Fault Detection and Isolation (FDI) is a method to monitor, identify, and pinpoint the type and location of system fault in a complex multiple input multiple output (MIMO) non-linear system. A two wheel robot is used as a complex system in this study. The aim of the research is to construct and design a Fault Detection and Isolation algorithm. The proposed method for the fault identification is using hybrid technique that combines Kalman filter and Artificial Neural Network (ANN). The Kalman filter is able to recognize the data from the sensors of the system and indicate the fault of the system in the sensor reading. Error prediction is based on the fault magnitude and the time occurrence of fault. Additionally, Artificial Neural Network (ANN) is another algorithm used to determine the type of fault and isolate the fault in the system.</description><subject>Algorithms</subject><subject>Artificial neural networks</subject><subject>Complex systems</subject><subject>Error detection</subject><subject>Fault detection</subject><subject>Kalman filters</subject><subject>MIMO (control systems)</subject><subject>Neural networks</subject><subject>Nonlinear systems</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2017</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNp9kE1LAzEQhoMoWKsH_8GCN2FrJl-bHKXYKhS8KHgL2XzAlt3NusmK_ffWtuDN0zDwvO8MD0K3gBeABX2ABVOKUkXO0Aw4h7ISIM7RDGPFSsLoxyW6SmmLMVFVJWcIr8zU5sL57G1uYl-Y3hVNiq05bCGOhY3d0PrvIu1S9t01ugimTf7mNOfoffX0tnwuN6_rl-XjprRE0VwaJ2pDqBcseBW4MS4ozqWltVFcUs6dwhw8tqQC66mEQKFSltWcOFCS0zm6O_YOY_ycfMp6G6ex35_UBEBgKRmGPXV_pJJt8uFlPYxNZ8ad_oqjBn2yoQcX_oMB6199fwH6A5LLYHk</recordid><startdate>20170721</startdate><enddate>20170721</enddate><creator>Jing, Chan Shi</creator><creator>Bayuaji, Luhur</creator><creator>Samad, R.</creator><creator>Mustafa, M.</creator><creator>Abdullah, N. R. H.</creator><creator>Zain, Z. M.</creator><creator>Pebrianti, Dwi</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20170721</creationdate><title>Fault detection and isolation for complex system</title><author>Jing, Chan Shi ; Bayuaji, Luhur ; Samad, R. ; Mustafa, M. ; Abdullah, N. R. H. ; Zain, Z. M. ; Pebrianti, Dwi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-ad6ba23e64fe9f5aadf9558c3ba958355d9051e0c271ce381f3179c4b52d19853</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Algorithms</topic><topic>Artificial neural networks</topic><topic>Complex systems</topic><topic>Error detection</topic><topic>Fault detection</topic><topic>Kalman filters</topic><topic>MIMO (control systems)</topic><topic>Neural networks</topic><topic>Nonlinear systems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jing, Chan Shi</creatorcontrib><creatorcontrib>Bayuaji, Luhur</creatorcontrib><creatorcontrib>Samad, R.</creatorcontrib><creatorcontrib>Mustafa, M.</creatorcontrib><creatorcontrib>Abdullah, N. R. H.</creatorcontrib><creatorcontrib>Zain, Z. M.</creatorcontrib><creatorcontrib>Pebrianti, Dwi</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jing, Chan Shi</au><au>Bayuaji, Luhur</au><au>Samad, R.</au><au>Mustafa, M.</au><au>Abdullah, N. R. H.</au><au>Zain, Z. M.</au><au>Pebrianti, Dwi</au><au>Shibatomi, Kazutaka</au><au>Jaafar, Mariatti</au><au>Musa, Mohd Kusairay</au><au>Razak, Khairunisak Abdul</au><au>Hussain, Zuhailawati</au><au>Kian, Tan Wai</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Fault detection and isolation for complex system</atitle><btitle>AIP conference proceedings</btitle><date>2017-07-21</date><risdate>2017</risdate><volume>1865</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>Fault Detection and Isolation (FDI) is a method to monitor, identify, and pinpoint the type and location of system fault in a complex multiple input multiple output (MIMO) non-linear system. A two wheel robot is used as a complex system in this study. The aim of the research is to construct and design a Fault Detection and Isolation algorithm. The proposed method for the fault identification is using hybrid technique that combines Kalman filter and Artificial Neural Network (ANN). The Kalman filter is able to recognize the data from the sensors of the system and indicate the fault of the system in the sensor reading. Error prediction is based on the fault magnitude and the time occurrence of fault. Additionally, Artificial Neural Network (ANN) is another algorithm used to determine the type of fault and isolate the fault in the system.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.4993392</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0094-243X
ispartof AIP conference proceedings, 2017, Vol.1865 (1)
issn 0094-243X
1551-7616
language eng
recordid cdi_proquest_journals_2116088401
source AIP Journals Complete
subjects Algorithms
Artificial neural networks
Complex systems
Error detection
Fault detection
Kalman filters
MIMO (control systems)
Neural networks
Nonlinear systems
title Fault detection and isolation for complex system
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T23%3A32%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Fault%20detection%20and%20isolation%20for%20complex%20system&rft.btitle=AIP%20conference%20proceedings&rft.au=Jing,%20Chan%20Shi&rft.date=2017-07-21&rft.volume=1865&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/1.4993392&rft_dat=%3Cproquest_scita%3E2116088401%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2116088401&rft_id=info:pmid/&rfr_iscdi=true