Magnetic vortex nucleation/annihilation in artificial-ferrimagnet microdisks
The topological nature of the magnetic-vortex state gives rise to peculiar magnetization reversal observed in magnetic microdisks. Interestingly, magnetostatic and exchange, energies which, drive this reversal can be effectively controlled in artificial ferrimagnet heterostructures composed of rare-...
Gespeichert in:
Veröffentlicht in: | Journal of applied physics 2017-08, Vol.122 (8) |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 8 |
container_start_page | |
container_title | Journal of applied physics |
container_volume | 122 |
creator | Lapa, Pavel N. Ding, Junjia Phatak, Charudatta Pearson, John E. Jiang, J. S. Hoffmann, Axel Novosad, Valentine |
description | The topological nature of the magnetic-vortex state gives rise to peculiar magnetization reversal observed in magnetic microdisks. Interestingly, magnetostatic and exchange, energies which, drive this reversal can be effectively controlled in artificial ferrimagnet heterostructures composed of rare-earth and transition metals. [Py(t)/Gd(t)]25 (t = 1 or 2 nm) superlattices demonstrate a pronounced change of the magnetization and exchange stiffness in a 10–300 K temperature range as well as very small magnetic anisotropy. Due to these properties, the magnetization of cylindrical microdisks composed of these artificial ferrimagnets can be transformed from the vortex to uniformly magnetized states in a permanent magnetic field by changing the temperature. We explored the behavior of magnetization in 1.5-μm [Py(t)/Gd(t)]25 (t = 1 or 2 nm) disks at different temperatures and magnetic fields and observed that due to the energy barrier separating vortex and uniformly magnetized states, the vortex nucleation and annihilation occur at different temperatures. This causes the temperature dependences of the magnetization in these Py/Gd disks to demonstrate a unique hysteretic behavior in a narrow temperature range. It was discovered that for the [Py(2 nm)/Gd(2 nm)]25 microdisks, the vortex can be metastable within a certain temperature range. |
doi_str_mv | 10.1063/1.4999089 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2116079743</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2116079743</sourcerecordid><originalsourceid>FETCH-LOGICAL-c354t-97d88b8328dfc894a54223e950118e60dbc6971313e001e94d9b5fb4406086633</originalsourceid><addsrcrecordid>eNp9kM1OwzAQhC0EEqVw4A0iOIGU1o4dx3tEVfmRirjA2Uoch7qkTrFdBG-P01RwQOK0Wunb2ZlB6JzgCcGcTsmEAQAWcIBGJI60yHN8iEYYZyQVUMAxOvF-hTEhgsIILR7LV6uDUclH54L-TOxWtboMprPT0lqzNO1uSYxNShdMY5Qp27TRzpn17jRZG-W62vg3f4qOmrL1-mw_x-jldv48u08XT3cPs5tFqmjOQgpFLUQlaCbqRglgZc6yjGrIe1Oa47pSHApCCdXRpwZWQ5U3FWOYY8E5pWN0Meh2PhjplQlaLVVnrVZBEgrxSxahywHauO59q32Qq27rbPQlM0I4LqBgvdTVQMUM3jvdyE0fzH1JgmXfqCRy32hkrwe2_7hr5QeO5f2CclM3_8F_lb8BWZmDaA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2116079743</pqid></control><display><type>article</type><title>Magnetic vortex nucleation/annihilation in artificial-ferrimagnet microdisks</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Lapa, Pavel N. ; Ding, Junjia ; Phatak, Charudatta ; Pearson, John E. ; Jiang, J. S. ; Hoffmann, Axel ; Novosad, Valentine</creator><creatorcontrib>Lapa, Pavel N. ; Ding, Junjia ; Phatak, Charudatta ; Pearson, John E. ; Jiang, J. S. ; Hoffmann, Axel ; Novosad, Valentine ; Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><description>The topological nature of the magnetic-vortex state gives rise to peculiar magnetization reversal observed in magnetic microdisks. Interestingly, magnetostatic and exchange, energies which, drive this reversal can be effectively controlled in artificial ferrimagnet heterostructures composed of rare-earth and transition metals. [Py(t)/Gd(t)]25 (t = 1 or 2 nm) superlattices demonstrate a pronounced change of the magnetization and exchange stiffness in a 10–300 K temperature range as well as very small magnetic anisotropy. Due to these properties, the magnetization of cylindrical microdisks composed of these artificial ferrimagnets can be transformed from the vortex to uniformly magnetized states in a permanent magnetic field by changing the temperature. We explored the behavior of magnetization in 1.5-μm [Py(t)/Gd(t)]25 (t = 1 or 2 nm) disks at different temperatures and magnetic fields and observed that due to the energy barrier separating vortex and uniformly magnetized states, the vortex nucleation and annihilation occur at different temperatures. This causes the temperature dependences of the magnetization in these Py/Gd disks to demonstrate a unique hysteretic behavior in a narrow temperature range. It was discovered that for the [Py(2 nm)/Gd(2 nm)]25 microdisks, the vortex can be metastable within a certain temperature range.</description><identifier>ISSN: 0021-8979</identifier><identifier>EISSN: 1089-7550</identifier><identifier>DOI: 10.1063/1.4999089</identifier><identifier>CODEN: JAPIAU</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS ; Disks ; Ferrimagnetism ; Ferrimagnets ; Gadolinium ; Heterostructures ; Magnetic anisotropy ; Magnetic fields ; Magnetic properties ; Magnetization reversal ; Nucleation ; Rare earth elements ; Stiffness ; Superlattices ; Temperature ; Transition metals ; Vortices</subject><ispartof>Journal of applied physics, 2017-08, Vol.122 (8)</ispartof><rights>Author(s)</rights><rights>2017 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c354t-97d88b8328dfc894a54223e950118e60dbc6971313e001e94d9b5fb4406086633</citedby><cites>FETCH-LOGICAL-c354t-97d88b8328dfc894a54223e950118e60dbc6971313e001e94d9b5fb4406086633</cites><orcidid>0000-0002-1808-2767 ; 0000-0002-9917-9156 ; 0000-0002-8931-0296 ; 0000000299179156 ; 0000000218082767 ; 0000000289310296</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jap/article-lookup/doi/10.1063/1.4999089$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>230,314,777,781,791,882,4498,27905,27906,76133</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1393542$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Lapa, Pavel N.</creatorcontrib><creatorcontrib>Ding, Junjia</creatorcontrib><creatorcontrib>Phatak, Charudatta</creatorcontrib><creatorcontrib>Pearson, John E.</creatorcontrib><creatorcontrib>Jiang, J. S.</creatorcontrib><creatorcontrib>Hoffmann, Axel</creatorcontrib><creatorcontrib>Novosad, Valentine</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><title>Magnetic vortex nucleation/annihilation in artificial-ferrimagnet microdisks</title><title>Journal of applied physics</title><description>The topological nature of the magnetic-vortex state gives rise to peculiar magnetization reversal observed in magnetic microdisks. Interestingly, magnetostatic and exchange, energies which, drive this reversal can be effectively controlled in artificial ferrimagnet heterostructures composed of rare-earth and transition metals. [Py(t)/Gd(t)]25 (t = 1 or 2 nm) superlattices demonstrate a pronounced change of the magnetization and exchange stiffness in a 10–300 K temperature range as well as very small magnetic anisotropy. Due to these properties, the magnetization of cylindrical microdisks composed of these artificial ferrimagnets can be transformed from the vortex to uniformly magnetized states in a permanent magnetic field by changing the temperature. We explored the behavior of magnetization in 1.5-μm [Py(t)/Gd(t)]25 (t = 1 or 2 nm) disks at different temperatures and magnetic fields and observed that due to the energy barrier separating vortex and uniformly magnetized states, the vortex nucleation and annihilation occur at different temperatures. This causes the temperature dependences of the magnetization in these Py/Gd disks to demonstrate a unique hysteretic behavior in a narrow temperature range. It was discovered that for the [Py(2 nm)/Gd(2 nm)]25 microdisks, the vortex can be metastable within a certain temperature range.</description><subject>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</subject><subject>Disks</subject><subject>Ferrimagnetism</subject><subject>Ferrimagnets</subject><subject>Gadolinium</subject><subject>Heterostructures</subject><subject>Magnetic anisotropy</subject><subject>Magnetic fields</subject><subject>Magnetic properties</subject><subject>Magnetization reversal</subject><subject>Nucleation</subject><subject>Rare earth elements</subject><subject>Stiffness</subject><subject>Superlattices</subject><subject>Temperature</subject><subject>Transition metals</subject><subject>Vortices</subject><issn>0021-8979</issn><issn>1089-7550</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9kM1OwzAQhC0EEqVw4A0iOIGU1o4dx3tEVfmRirjA2Uoch7qkTrFdBG-P01RwQOK0Wunb2ZlB6JzgCcGcTsmEAQAWcIBGJI60yHN8iEYYZyQVUMAxOvF-hTEhgsIILR7LV6uDUclH54L-TOxWtboMprPT0lqzNO1uSYxNShdMY5Qp27TRzpn17jRZG-W62vg3f4qOmrL1-mw_x-jldv48u08XT3cPs5tFqmjOQgpFLUQlaCbqRglgZc6yjGrIe1Oa47pSHApCCdXRpwZWQ5U3FWOYY8E5pWN0Meh2PhjplQlaLVVnrVZBEgrxSxahywHauO59q32Qq27rbPQlM0I4LqBgvdTVQMUM3jvdyE0fzH1JgmXfqCRy32hkrwe2_7hr5QeO5f2CclM3_8F_lb8BWZmDaA</recordid><startdate>20170828</startdate><enddate>20170828</enddate><creator>Lapa, Pavel N.</creator><creator>Ding, Junjia</creator><creator>Phatak, Charudatta</creator><creator>Pearson, John E.</creator><creator>Jiang, J. S.</creator><creator>Hoffmann, Axel</creator><creator>Novosad, Valentine</creator><general>American Institute of Physics</general><general>American Institute of Physics (AIP)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-1808-2767</orcidid><orcidid>https://orcid.org/0000-0002-9917-9156</orcidid><orcidid>https://orcid.org/0000-0002-8931-0296</orcidid><orcidid>https://orcid.org/0000000299179156</orcidid><orcidid>https://orcid.org/0000000218082767</orcidid><orcidid>https://orcid.org/0000000289310296</orcidid></search><sort><creationdate>20170828</creationdate><title>Magnetic vortex nucleation/annihilation in artificial-ferrimagnet microdisks</title><author>Lapa, Pavel N. ; Ding, Junjia ; Phatak, Charudatta ; Pearson, John E. ; Jiang, J. S. ; Hoffmann, Axel ; Novosad, Valentine</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c354t-97d88b8328dfc894a54223e950118e60dbc6971313e001e94d9b5fb4406086633</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</topic><topic>Disks</topic><topic>Ferrimagnetism</topic><topic>Ferrimagnets</topic><topic>Gadolinium</topic><topic>Heterostructures</topic><topic>Magnetic anisotropy</topic><topic>Magnetic fields</topic><topic>Magnetic properties</topic><topic>Magnetization reversal</topic><topic>Nucleation</topic><topic>Rare earth elements</topic><topic>Stiffness</topic><topic>Superlattices</topic><topic>Temperature</topic><topic>Transition metals</topic><topic>Vortices</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lapa, Pavel N.</creatorcontrib><creatorcontrib>Ding, Junjia</creatorcontrib><creatorcontrib>Phatak, Charudatta</creatorcontrib><creatorcontrib>Pearson, John E.</creatorcontrib><creatorcontrib>Jiang, J. S.</creatorcontrib><creatorcontrib>Hoffmann, Axel</creatorcontrib><creatorcontrib>Novosad, Valentine</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Journal of applied physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lapa, Pavel N.</au><au>Ding, Junjia</au><au>Phatak, Charudatta</au><au>Pearson, John E.</au><au>Jiang, J. S.</au><au>Hoffmann, Axel</au><au>Novosad, Valentine</au><aucorp>Argonne National Lab. (ANL), Argonne, IL (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Magnetic vortex nucleation/annihilation in artificial-ferrimagnet microdisks</atitle><jtitle>Journal of applied physics</jtitle><date>2017-08-28</date><risdate>2017</risdate><volume>122</volume><issue>8</issue><issn>0021-8979</issn><eissn>1089-7550</eissn><coden>JAPIAU</coden><abstract>The topological nature of the magnetic-vortex state gives rise to peculiar magnetization reversal observed in magnetic microdisks. Interestingly, magnetostatic and exchange, energies which, drive this reversal can be effectively controlled in artificial ferrimagnet heterostructures composed of rare-earth and transition metals. [Py(t)/Gd(t)]25 (t = 1 or 2 nm) superlattices demonstrate a pronounced change of the magnetization and exchange stiffness in a 10–300 K temperature range as well as very small magnetic anisotropy. Due to these properties, the magnetization of cylindrical microdisks composed of these artificial ferrimagnets can be transformed from the vortex to uniformly magnetized states in a permanent magnetic field by changing the temperature. We explored the behavior of magnetization in 1.5-μm [Py(t)/Gd(t)]25 (t = 1 or 2 nm) disks at different temperatures and magnetic fields and observed that due to the energy barrier separating vortex and uniformly magnetized states, the vortex nucleation and annihilation occur at different temperatures. This causes the temperature dependences of the magnetization in these Py/Gd disks to demonstrate a unique hysteretic behavior in a narrow temperature range. It was discovered that for the [Py(2 nm)/Gd(2 nm)]25 microdisks, the vortex can be metastable within a certain temperature range.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.4999089</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-1808-2767</orcidid><orcidid>https://orcid.org/0000-0002-9917-9156</orcidid><orcidid>https://orcid.org/0000-0002-8931-0296</orcidid><orcidid>https://orcid.org/0000000299179156</orcidid><orcidid>https://orcid.org/0000000218082767</orcidid><orcidid>https://orcid.org/0000000289310296</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-8979 |
ispartof | Journal of applied physics, 2017-08, Vol.122 (8) |
issn | 0021-8979 1089-7550 |
language | eng |
recordid | cdi_proquest_journals_2116079743 |
source | AIP Journals Complete; Alma/SFX Local Collection |
subjects | CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS Disks Ferrimagnetism Ferrimagnets Gadolinium Heterostructures Magnetic anisotropy Magnetic fields Magnetic properties Magnetization reversal Nucleation Rare earth elements Stiffness Superlattices Temperature Transition metals Vortices |
title | Magnetic vortex nucleation/annihilation in artificial-ferrimagnet microdisks |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T06%3A21%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Magnetic%20vortex%20nucleation/annihilation%20in%20artificial-ferrimagnet%20microdisks&rft.jtitle=Journal%20of%20applied%20physics&rft.au=Lapa,%20Pavel%20N.&rft.aucorp=Argonne%20National%20Lab.%20(ANL),%20Argonne,%20IL%20(United%20States)&rft.date=2017-08-28&rft.volume=122&rft.issue=8&rft.issn=0021-8979&rft.eissn=1089-7550&rft.coden=JAPIAU&rft_id=info:doi/10.1063/1.4999089&rft_dat=%3Cproquest_cross%3E2116079743%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2116079743&rft_id=info:pmid/&rfr_iscdi=true |