Centroids and derivations of low-dimensional Leibniz algebra

In this paper we introduce the concept of centroid and derivation of Leibniz algebras. By using the classification results of Leibniz algebras obtained earlier, we describe the centroids and derivations of low-dimensional Leibniz algebras. We also study some properties of centroids of Leibniz algebr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Husain, Sh. K. Said, Rakhimov, I. S., Basri, W.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page
container_title
container_volume 1870
creator Husain, Sh. K. Said
Rakhimov, I. S.
Basri, W.
description In this paper we introduce the concept of centroid and derivation of Leibniz algebras. By using the classification results of Leibniz algebras obtained earlier, we describe the centroids and derivations of low-dimensional Leibniz algebras. We also study some properties of centroids of Leibniz algebras and use these properties to categorize the algebras to have so-called small centroids. The description of the derivations enables us to specify an important subclass of Leibniz algebras called characteristically nilpotent.
doi_str_mv 10.1063/1.4995838
format Conference Proceeding
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_journals_2116073338</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2116073338</sourcerecordid><originalsourceid>FETCH-LOGICAL-p288t-381ea0a0da0f4de759daafccdc0198d797a4d0a5df0dbc948ebc62700232c8163</originalsourceid><addsrcrecordid>eNp9kE9LxDAUxIMoWFcPfoOCN6HrS9M2CXiR4j8oeFHwFl6TVLJ0m5p0V_TTW90Fb54eDL8Z5g0h5xSWFCp2RZeFlKVg4oAktCxpxitaHZIEQBZZXrDXY3IS4wogl5yLhFzXdpiCdyamOJjU2OC2ODk_xNR3ae8_MuPWdoizgn3aWNcO7ivF_s22AU_JUYd9tGf7uyAvd7fP9UPWPN0_1jdNNuZCTBkT1CIgGISuMJaX0iB2WhsNVArDJcfCAJamA9NqWQjb6irnc0eWa0ErtiAXu9wx-PeNjZNa-U2YC0WVU1oBZ4yJmbrcUVG76fcHNQa3xvCptj4oqvbLqNF0_8EU1M-Ufwb2DaUqZd8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>2116073338</pqid></control><display><type>conference_proceeding</type><title>Centroids and derivations of low-dimensional Leibniz algebra</title><source>AIP Journals Complete</source><creator>Husain, Sh. K. Said ; Rakhimov, I. S. ; Basri, W.</creator><contributor>Jalil, Masita Abd ; Rudrusamy, Gobithaasan ; Rahim, Hanafi A. ; Hasni, Roslan ; Salleh, Zabidin ; Salleh, Hassilah ; Lola, Muhamad Safiih</contributor><creatorcontrib>Husain, Sh. K. Said ; Rakhimov, I. S. ; Basri, W. ; Jalil, Masita Abd ; Rudrusamy, Gobithaasan ; Rahim, Hanafi A. ; Hasni, Roslan ; Salleh, Zabidin ; Salleh, Hassilah ; Lola, Muhamad Safiih</creatorcontrib><description>In this paper we introduce the concept of centroid and derivation of Leibniz algebras. By using the classification results of Leibniz algebras obtained earlier, we describe the centroids and derivations of low-dimensional Leibniz algebras. We also study some properties of centroids of Leibniz algebras and use these properties to categorize the algebras to have so-called small centroids. The description of the derivations enables us to specify an important subclass of Leibniz algebras called characteristically nilpotent.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/1.4995838</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Algebra ; Centroids</subject><ispartof>AIP conference proceedings, 2017, Vol.1870 (1)</ispartof><rights>Author(s)</rights><rights>2017 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/acp/article-lookup/doi/10.1063/1.4995838$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>309,310,314,780,784,789,790,794,4512,23930,23931,25140,27924,27925,76384</link.rule.ids></links><search><contributor>Jalil, Masita Abd</contributor><contributor>Rudrusamy, Gobithaasan</contributor><contributor>Rahim, Hanafi A.</contributor><contributor>Hasni, Roslan</contributor><contributor>Salleh, Zabidin</contributor><contributor>Salleh, Hassilah</contributor><contributor>Lola, Muhamad Safiih</contributor><creatorcontrib>Husain, Sh. K. Said</creatorcontrib><creatorcontrib>Rakhimov, I. S.</creatorcontrib><creatorcontrib>Basri, W.</creatorcontrib><title>Centroids and derivations of low-dimensional Leibniz algebra</title><title>AIP conference proceedings</title><description>In this paper we introduce the concept of centroid and derivation of Leibniz algebras. By using the classification results of Leibniz algebras obtained earlier, we describe the centroids and derivations of low-dimensional Leibniz algebras. We also study some properties of centroids of Leibniz algebras and use these properties to categorize the algebras to have so-called small centroids. The description of the derivations enables us to specify an important subclass of Leibniz algebras called characteristically nilpotent.</description><subject>Algebra</subject><subject>Centroids</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2017</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNp9kE9LxDAUxIMoWFcPfoOCN6HrS9M2CXiR4j8oeFHwFl6TVLJ0m5p0V_TTW90Fb54eDL8Z5g0h5xSWFCp2RZeFlKVg4oAktCxpxitaHZIEQBZZXrDXY3IS4wogl5yLhFzXdpiCdyamOJjU2OC2ODk_xNR3ae8_MuPWdoizgn3aWNcO7ivF_s22AU_JUYd9tGf7uyAvd7fP9UPWPN0_1jdNNuZCTBkT1CIgGISuMJaX0iB2WhsNVArDJcfCAJamA9NqWQjb6irnc0eWa0ErtiAXu9wx-PeNjZNa-U2YC0WVU1oBZ4yJmbrcUVG76fcHNQa3xvCptj4oqvbLqNF0_8EU1M-Ufwb2DaUqZd8</recordid><startdate>20170807</startdate><enddate>20170807</enddate><creator>Husain, Sh. K. Said</creator><creator>Rakhimov, I. S.</creator><creator>Basri, W.</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20170807</creationdate><title>Centroids and derivations of low-dimensional Leibniz algebra</title><author>Husain, Sh. K. Said ; Rakhimov, I. S. ; Basri, W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p288t-381ea0a0da0f4de759daafccdc0198d797a4d0a5df0dbc948ebc62700232c8163</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Algebra</topic><topic>Centroids</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Husain, Sh. K. Said</creatorcontrib><creatorcontrib>Rakhimov, I. S.</creatorcontrib><creatorcontrib>Basri, W.</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Husain, Sh. K. Said</au><au>Rakhimov, I. S.</au><au>Basri, W.</au><au>Jalil, Masita Abd</au><au>Rudrusamy, Gobithaasan</au><au>Rahim, Hanafi A.</au><au>Hasni, Roslan</au><au>Salleh, Zabidin</au><au>Salleh, Hassilah</au><au>Lola, Muhamad Safiih</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Centroids and derivations of low-dimensional Leibniz algebra</atitle><btitle>AIP conference proceedings</btitle><date>2017-08-07</date><risdate>2017</risdate><volume>1870</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>In this paper we introduce the concept of centroid and derivation of Leibniz algebras. By using the classification results of Leibniz algebras obtained earlier, we describe the centroids and derivations of low-dimensional Leibniz algebras. We also study some properties of centroids of Leibniz algebras and use these properties to categorize the algebras to have so-called small centroids. The description of the derivations enables us to specify an important subclass of Leibniz algebras called characteristically nilpotent.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.4995838</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0094-243X
ispartof AIP conference proceedings, 2017, Vol.1870 (1)
issn 0094-243X
1551-7616
language eng
recordid cdi_proquest_journals_2116073338
source AIP Journals Complete
subjects Algebra
Centroids
title Centroids and derivations of low-dimensional Leibniz algebra
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T23%3A39%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Centroids%20and%20derivations%20of%20low-dimensional%20Leibniz%20algebra&rft.btitle=AIP%20conference%20proceedings&rft.au=Husain,%20Sh.%20K.%20Said&rft.date=2017-08-07&rft.volume=1870&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/1.4995838&rft_dat=%3Cproquest_scita%3E2116073338%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2116073338&rft_id=info:pmid/&rfr_iscdi=true