Centroids and derivations of low-dimensional Leibniz algebra
In this paper we introduce the concept of centroid and derivation of Leibniz algebras. By using the classification results of Leibniz algebras obtained earlier, we describe the centroids and derivations of low-dimensional Leibniz algebras. We also study some properties of centroids of Leibniz algebr...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | |
container_title | |
container_volume | 1870 |
creator | Husain, Sh. K. Said Rakhimov, I. S. Basri, W. |
description | In this paper we introduce the concept of centroid and derivation of Leibniz algebras. By using the classification results of Leibniz algebras obtained earlier, we describe the centroids and derivations of low-dimensional Leibniz algebras. We also study some properties of centroids of Leibniz algebras and use these properties to categorize the algebras to have so-called small centroids. The description of the derivations enables us to specify an important subclass of Leibniz algebras called characteristically nilpotent. |
doi_str_mv | 10.1063/1.4995838 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_journals_2116073338</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2116073338</sourcerecordid><originalsourceid>FETCH-LOGICAL-p288t-381ea0a0da0f4de759daafccdc0198d797a4d0a5df0dbc948ebc62700232c8163</originalsourceid><addsrcrecordid>eNp9kE9LxDAUxIMoWFcPfoOCN6HrS9M2CXiR4j8oeFHwFl6TVLJ0m5p0V_TTW90Fb54eDL8Z5g0h5xSWFCp2RZeFlKVg4oAktCxpxitaHZIEQBZZXrDXY3IS4wogl5yLhFzXdpiCdyamOJjU2OC2ODk_xNR3ae8_MuPWdoizgn3aWNcO7ivF_s22AU_JUYd9tGf7uyAvd7fP9UPWPN0_1jdNNuZCTBkT1CIgGISuMJaX0iB2WhsNVArDJcfCAJamA9NqWQjb6irnc0eWa0ErtiAXu9wx-PeNjZNa-U2YC0WVU1oBZ4yJmbrcUVG76fcHNQa3xvCptj4oqvbLqNF0_8EU1M-Ufwb2DaUqZd8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>2116073338</pqid></control><display><type>conference_proceeding</type><title>Centroids and derivations of low-dimensional Leibniz algebra</title><source>AIP Journals Complete</source><creator>Husain, Sh. K. Said ; Rakhimov, I. S. ; Basri, W.</creator><contributor>Jalil, Masita Abd ; Rudrusamy, Gobithaasan ; Rahim, Hanafi A. ; Hasni, Roslan ; Salleh, Zabidin ; Salleh, Hassilah ; Lola, Muhamad Safiih</contributor><creatorcontrib>Husain, Sh. K. Said ; Rakhimov, I. S. ; Basri, W. ; Jalil, Masita Abd ; Rudrusamy, Gobithaasan ; Rahim, Hanafi A. ; Hasni, Roslan ; Salleh, Zabidin ; Salleh, Hassilah ; Lola, Muhamad Safiih</creatorcontrib><description>In this paper we introduce the concept of centroid and derivation of Leibniz algebras. By using the classification results of Leibniz algebras obtained earlier, we describe the centroids and derivations of low-dimensional Leibniz algebras. We also study some properties of centroids of Leibniz algebras and use these properties to categorize the algebras to have so-called small centroids. The description of the derivations enables us to specify an important subclass of Leibniz algebras called characteristically nilpotent.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/1.4995838</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Algebra ; Centroids</subject><ispartof>AIP conference proceedings, 2017, Vol.1870 (1)</ispartof><rights>Author(s)</rights><rights>2017 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/acp/article-lookup/doi/10.1063/1.4995838$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>309,310,314,780,784,789,790,794,4512,23930,23931,25140,27924,27925,76384</link.rule.ids></links><search><contributor>Jalil, Masita Abd</contributor><contributor>Rudrusamy, Gobithaasan</contributor><contributor>Rahim, Hanafi A.</contributor><contributor>Hasni, Roslan</contributor><contributor>Salleh, Zabidin</contributor><contributor>Salleh, Hassilah</contributor><contributor>Lola, Muhamad Safiih</contributor><creatorcontrib>Husain, Sh. K. Said</creatorcontrib><creatorcontrib>Rakhimov, I. S.</creatorcontrib><creatorcontrib>Basri, W.</creatorcontrib><title>Centroids and derivations of low-dimensional Leibniz algebra</title><title>AIP conference proceedings</title><description>In this paper we introduce the concept of centroid and derivation of Leibniz algebras. By using the classification results of Leibniz algebras obtained earlier, we describe the centroids and derivations of low-dimensional Leibniz algebras. We also study some properties of centroids of Leibniz algebras and use these properties to categorize the algebras to have so-called small centroids. The description of the derivations enables us to specify an important subclass of Leibniz algebras called characteristically nilpotent.</description><subject>Algebra</subject><subject>Centroids</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2017</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNp9kE9LxDAUxIMoWFcPfoOCN6HrS9M2CXiR4j8oeFHwFl6TVLJ0m5p0V_TTW90Fb54eDL8Z5g0h5xSWFCp2RZeFlKVg4oAktCxpxitaHZIEQBZZXrDXY3IS4wogl5yLhFzXdpiCdyamOJjU2OC2ODk_xNR3ae8_MuPWdoizgn3aWNcO7ivF_s22AU_JUYd9tGf7uyAvd7fP9UPWPN0_1jdNNuZCTBkT1CIgGISuMJaX0iB2WhsNVArDJcfCAJamA9NqWQjb6irnc0eWa0ErtiAXu9wx-PeNjZNa-U2YC0WVU1oBZ4yJmbrcUVG76fcHNQa3xvCptj4oqvbLqNF0_8EU1M-Ufwb2DaUqZd8</recordid><startdate>20170807</startdate><enddate>20170807</enddate><creator>Husain, Sh. K. Said</creator><creator>Rakhimov, I. S.</creator><creator>Basri, W.</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20170807</creationdate><title>Centroids and derivations of low-dimensional Leibniz algebra</title><author>Husain, Sh. K. Said ; Rakhimov, I. S. ; Basri, W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p288t-381ea0a0da0f4de759daafccdc0198d797a4d0a5df0dbc948ebc62700232c8163</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Algebra</topic><topic>Centroids</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Husain, Sh. K. Said</creatorcontrib><creatorcontrib>Rakhimov, I. S.</creatorcontrib><creatorcontrib>Basri, W.</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Husain, Sh. K. Said</au><au>Rakhimov, I. S.</au><au>Basri, W.</au><au>Jalil, Masita Abd</au><au>Rudrusamy, Gobithaasan</au><au>Rahim, Hanafi A.</au><au>Hasni, Roslan</au><au>Salleh, Zabidin</au><au>Salleh, Hassilah</au><au>Lola, Muhamad Safiih</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Centroids and derivations of low-dimensional Leibniz algebra</atitle><btitle>AIP conference proceedings</btitle><date>2017-08-07</date><risdate>2017</risdate><volume>1870</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>In this paper we introduce the concept of centroid and derivation of Leibniz algebras. By using the classification results of Leibniz algebras obtained earlier, we describe the centroids and derivations of low-dimensional Leibniz algebras. We also study some properties of centroids of Leibniz algebras and use these properties to categorize the algebras to have so-called small centroids. The description of the derivations enables us to specify an important subclass of Leibniz algebras called characteristically nilpotent.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.4995838</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0094-243X |
ispartof | AIP conference proceedings, 2017, Vol.1870 (1) |
issn | 0094-243X 1551-7616 |
language | eng |
recordid | cdi_proquest_journals_2116073338 |
source | AIP Journals Complete |
subjects | Algebra Centroids |
title | Centroids and derivations of low-dimensional Leibniz algebra |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T23%3A39%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Centroids%20and%20derivations%20of%20low-dimensional%20Leibniz%20algebra&rft.btitle=AIP%20conference%20proceedings&rft.au=Husain,%20Sh.%20K.%20Said&rft.date=2017-08-07&rft.volume=1870&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/1.4995838&rft_dat=%3Cproquest_scita%3E2116073338%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2116073338&rft_id=info:pmid/&rfr_iscdi=true |