A quadratic regression modelling on paddy production in the area of Perlis

Polynomial regression models are useful in situations in which the relationship between a response variable and predictor variables is curvilinear. Polynomial regression fits the nonlinear relationship into a least squares linear regression model by decomposing the predictor variables into a kth ord...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Goh, Aizat Hanis Annas, Ali, Zalila, Nor, Norlida Mohd, Baharum, Adam, Ahmad, Wan Muhamad Amir W.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page
container_title
container_volume 1870
creator Goh, Aizat Hanis Annas
Ali, Zalila
Nor, Norlida Mohd
Baharum, Adam
Ahmad, Wan Muhamad Amir W.
description Polynomial regression models are useful in situations in which the relationship between a response variable and predictor variables is curvilinear. Polynomial regression fits the nonlinear relationship into a least squares linear regression model by decomposing the predictor variables into a kth order polynomial. The polynomial order determines the number of inflexions on the curvilinear fitted line. A second order polynomial forms a quadratic expression (parabolic curve) with either a single maximum or minimum, a third order polynomial forms a cubic expression with both a relative maximum and a minimum. This study used paddy data in the area of Perlis to model paddy production based on paddy cultivation characteristics and environmental characteristics. The results indicated that a quadratic regression model best fits the data and paddy production is affected by urea fertilizer application and the interaction between amount of average rainfall and percentage of area defected by pest and disease. Urea fertilizer application has a quadratic effect in the model which indicated that if the number of days of urea fertilizer application increased, paddy production is expected to decrease until it achieved a minimum value and paddy production is expected to increase at higher number of days of urea application. The decrease in paddy production with an increased in rainfall is greater, the higher the percentage of area defected by pest and disease.
doi_str_mv 10.1063/1.4995942
format Conference Proceeding
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_journals_2116070249</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2116070249</sourcerecordid><originalsourceid>FETCH-LOGICAL-p253t-e48699a16b6add451e5ec088b162461a16b324d64fe41ba2eef2758a56a25df13</originalsourceid><addsrcrecordid>eNp9kFFLwzAUhYMoOKcP_oOAb0JnbpqkzeMYOpWBPij4FrLmdmZ0bZe0wv69LRv45tPlcD7OPRxCboHNgKn0AWZCa6kFPyMTkBKSTIE6JxPGtEi4SL8uyVWMW8a4zrJ8Ql7ndN9bF2znCxpwEzBG39R01zisKl9v6CBa69yBtqFxfdGNrq9p943UBrS0Kek7hsrHa3JR2irizelOyefT48fiOVm9LV8W81XScpl2CYpcaW1BrdUQKySgxILl-RoUFwpGI-XCKVGigLXliCXPZG6lsly6EtIpuTvmDoX2PcbObJs-1MNLwwEUyxgXeqDuj1QsfGfH1qYNfmfDwQAz41YGzGmr_-CfJvyBpnVl-gv7FWm1</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>2116070249</pqid></control><display><type>conference_proceeding</type><title>A quadratic regression modelling on paddy production in the area of Perlis</title><source>AIP Journals Complete</source><creator>Goh, Aizat Hanis Annas ; Ali, Zalila ; Nor, Norlida Mohd ; Baharum, Adam ; Ahmad, Wan Muhamad Amir W.</creator><contributor>Jalil, Masita Abd ; Rudrusamy, Gobithaasan ; Rahim, Hanafi A. ; Hasni, Roslan ; Salleh, Zabidin ; Salleh, Hassilah ; Lola, Muhamad Safiih</contributor><creatorcontrib>Goh, Aizat Hanis Annas ; Ali, Zalila ; Nor, Norlida Mohd ; Baharum, Adam ; Ahmad, Wan Muhamad Amir W. ; Jalil, Masita Abd ; Rudrusamy, Gobithaasan ; Rahim, Hanafi A. ; Hasni, Roslan ; Salleh, Zabidin ; Salleh, Hassilah ; Lola, Muhamad Safiih</creatorcontrib><description>Polynomial regression models are useful in situations in which the relationship between a response variable and predictor variables is curvilinear. Polynomial regression fits the nonlinear relationship into a least squares linear regression model by decomposing the predictor variables into a kth order polynomial. The polynomial order determines the number of inflexions on the curvilinear fitted line. A second order polynomial forms a quadratic expression (parabolic curve) with either a single maximum or minimum, a third order polynomial forms a cubic expression with both a relative maximum and a minimum. This study used paddy data in the area of Perlis to model paddy production based on paddy cultivation characteristics and environmental characteristics. The results indicated that a quadratic regression model best fits the data and paddy production is affected by urea fertilizer application and the interaction between amount of average rainfall and percentage of area defected by pest and disease. Urea fertilizer application has a quadratic effect in the model which indicated that if the number of days of urea fertilizer application increased, paddy production is expected to decrease until it achieved a minimum value and paddy production is expected to increase at higher number of days of urea application. The decrease in paddy production with an increased in rainfall is greater, the higher the percentage of area defected by pest and disease.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/1.4995942</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Cultivation ; Fertilizers ; Polynomials ; Rainfall ; Regression models ; Ureas</subject><ispartof>AIP Conference Proceedings, 2017, Vol.1870 (1)</ispartof><rights>Author(s)</rights><rights>2017 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/acp/article-lookup/doi/10.1063/1.4995942$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>309,310,314,780,784,789,790,794,4512,23930,23931,25140,27924,27925,76384</link.rule.ids></links><search><contributor>Jalil, Masita Abd</contributor><contributor>Rudrusamy, Gobithaasan</contributor><contributor>Rahim, Hanafi A.</contributor><contributor>Hasni, Roslan</contributor><contributor>Salleh, Zabidin</contributor><contributor>Salleh, Hassilah</contributor><contributor>Lola, Muhamad Safiih</contributor><creatorcontrib>Goh, Aizat Hanis Annas</creatorcontrib><creatorcontrib>Ali, Zalila</creatorcontrib><creatorcontrib>Nor, Norlida Mohd</creatorcontrib><creatorcontrib>Baharum, Adam</creatorcontrib><creatorcontrib>Ahmad, Wan Muhamad Amir W.</creatorcontrib><title>A quadratic regression modelling on paddy production in the area of Perlis</title><title>AIP Conference Proceedings</title><description>Polynomial regression models are useful in situations in which the relationship between a response variable and predictor variables is curvilinear. Polynomial regression fits the nonlinear relationship into a least squares linear regression model by decomposing the predictor variables into a kth order polynomial. The polynomial order determines the number of inflexions on the curvilinear fitted line. A second order polynomial forms a quadratic expression (parabolic curve) with either a single maximum or minimum, a third order polynomial forms a cubic expression with both a relative maximum and a minimum. This study used paddy data in the area of Perlis to model paddy production based on paddy cultivation characteristics and environmental characteristics. The results indicated that a quadratic regression model best fits the data and paddy production is affected by urea fertilizer application and the interaction between amount of average rainfall and percentage of area defected by pest and disease. Urea fertilizer application has a quadratic effect in the model which indicated that if the number of days of urea fertilizer application increased, paddy production is expected to decrease until it achieved a minimum value and paddy production is expected to increase at higher number of days of urea application. The decrease in paddy production with an increased in rainfall is greater, the higher the percentage of area defected by pest and disease.</description><subject>Cultivation</subject><subject>Fertilizers</subject><subject>Polynomials</subject><subject>Rainfall</subject><subject>Regression models</subject><subject>Ureas</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2017</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNp9kFFLwzAUhYMoOKcP_oOAb0JnbpqkzeMYOpWBPij4FrLmdmZ0bZe0wv69LRv45tPlcD7OPRxCboHNgKn0AWZCa6kFPyMTkBKSTIE6JxPGtEi4SL8uyVWMW8a4zrJ8Ql7ndN9bF2znCxpwEzBG39R01zisKl9v6CBa69yBtqFxfdGNrq9p943UBrS0Kek7hsrHa3JR2irizelOyefT48fiOVm9LV8W81XScpl2CYpcaW1BrdUQKySgxILl-RoUFwpGI-XCKVGigLXliCXPZG6lsly6EtIpuTvmDoX2PcbObJs-1MNLwwEUyxgXeqDuj1QsfGfH1qYNfmfDwQAz41YGzGmr_-CfJvyBpnVl-gv7FWm1</recordid><startdate>20170807</startdate><enddate>20170807</enddate><creator>Goh, Aizat Hanis Annas</creator><creator>Ali, Zalila</creator><creator>Nor, Norlida Mohd</creator><creator>Baharum, Adam</creator><creator>Ahmad, Wan Muhamad Amir W.</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20170807</creationdate><title>A quadratic regression modelling on paddy production in the area of Perlis</title><author>Goh, Aizat Hanis Annas ; Ali, Zalila ; Nor, Norlida Mohd ; Baharum, Adam ; Ahmad, Wan Muhamad Amir W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p253t-e48699a16b6add451e5ec088b162461a16b324d64fe41ba2eef2758a56a25df13</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Cultivation</topic><topic>Fertilizers</topic><topic>Polynomials</topic><topic>Rainfall</topic><topic>Regression models</topic><topic>Ureas</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Goh, Aizat Hanis Annas</creatorcontrib><creatorcontrib>Ali, Zalila</creatorcontrib><creatorcontrib>Nor, Norlida Mohd</creatorcontrib><creatorcontrib>Baharum, Adam</creatorcontrib><creatorcontrib>Ahmad, Wan Muhamad Amir W.</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Goh, Aizat Hanis Annas</au><au>Ali, Zalila</au><au>Nor, Norlida Mohd</au><au>Baharum, Adam</au><au>Ahmad, Wan Muhamad Amir W.</au><au>Jalil, Masita Abd</au><au>Rudrusamy, Gobithaasan</au><au>Rahim, Hanafi A.</au><au>Hasni, Roslan</au><au>Salleh, Zabidin</au><au>Salleh, Hassilah</au><au>Lola, Muhamad Safiih</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A quadratic regression modelling on paddy production in the area of Perlis</atitle><btitle>AIP Conference Proceedings</btitle><date>2017-08-07</date><risdate>2017</risdate><volume>1870</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>Polynomial regression models are useful in situations in which the relationship between a response variable and predictor variables is curvilinear. Polynomial regression fits the nonlinear relationship into a least squares linear regression model by decomposing the predictor variables into a kth order polynomial. The polynomial order determines the number of inflexions on the curvilinear fitted line. A second order polynomial forms a quadratic expression (parabolic curve) with either a single maximum or minimum, a third order polynomial forms a cubic expression with both a relative maximum and a minimum. This study used paddy data in the area of Perlis to model paddy production based on paddy cultivation characteristics and environmental characteristics. The results indicated that a quadratic regression model best fits the data and paddy production is affected by urea fertilizer application and the interaction between amount of average rainfall and percentage of area defected by pest and disease. Urea fertilizer application has a quadratic effect in the model which indicated that if the number of days of urea fertilizer application increased, paddy production is expected to decrease until it achieved a minimum value and paddy production is expected to increase at higher number of days of urea application. The decrease in paddy production with an increased in rainfall is greater, the higher the percentage of area defected by pest and disease.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.4995942</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0094-243X
ispartof AIP Conference Proceedings, 2017, Vol.1870 (1)
issn 0094-243X
1551-7616
language eng
recordid cdi_proquest_journals_2116070249
source AIP Journals Complete
subjects Cultivation
Fertilizers
Polynomials
Rainfall
Regression models
Ureas
title A quadratic regression modelling on paddy production in the area of Perlis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T05%3A33%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20quadratic%20regression%20modelling%20on%20paddy%20production%20in%20the%20area%20of%20Perlis&rft.btitle=AIP%20Conference%20Proceedings&rft.au=Goh,%20Aizat%20Hanis%20Annas&rft.date=2017-08-07&rft.volume=1870&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/1.4995942&rft_dat=%3Cproquest_scita%3E2116070249%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2116070249&rft_id=info:pmid/&rfr_iscdi=true