A quadratic regression modelling on paddy production in the area of Perlis
Polynomial regression models are useful in situations in which the relationship between a response variable and predictor variables is curvilinear. Polynomial regression fits the nonlinear relationship into a least squares linear regression model by decomposing the predictor variables into a kth ord...
Gespeichert in:
Hauptverfasser: | , , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | |
container_title | |
container_volume | 1870 |
creator | Goh, Aizat Hanis Annas Ali, Zalila Nor, Norlida Mohd Baharum, Adam Ahmad, Wan Muhamad Amir W. |
description | Polynomial regression models are useful in situations in which the relationship between a response variable and predictor variables is curvilinear. Polynomial regression fits the nonlinear relationship into a least squares linear regression model by decomposing the predictor variables into a kth order polynomial. The polynomial order determines the number of inflexions on the curvilinear fitted line. A second order polynomial forms a quadratic expression (parabolic curve) with either a single maximum or minimum, a third order polynomial forms a cubic expression with both a relative maximum and a minimum. This study used paddy data in the area of Perlis to model paddy production based on paddy cultivation characteristics and environmental characteristics. The results indicated that a quadratic regression model best fits the data and paddy production is affected by urea fertilizer application and the interaction between amount of average rainfall and percentage of area defected by pest and disease. Urea fertilizer application has a quadratic effect in the model which indicated that if the number of days of urea fertilizer application increased, paddy production is expected to decrease until it achieved a minimum value and paddy production is expected to increase at higher number of days of urea application. The decrease in paddy production with an increased in rainfall is greater, the higher the percentage of area defected by pest and disease. |
doi_str_mv | 10.1063/1.4995942 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_journals_2116070249</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2116070249</sourcerecordid><originalsourceid>FETCH-LOGICAL-p253t-e48699a16b6add451e5ec088b162461a16b324d64fe41ba2eef2758a56a25df13</originalsourceid><addsrcrecordid>eNp9kFFLwzAUhYMoOKcP_oOAb0JnbpqkzeMYOpWBPij4FrLmdmZ0bZe0wv69LRv45tPlcD7OPRxCboHNgKn0AWZCa6kFPyMTkBKSTIE6JxPGtEi4SL8uyVWMW8a4zrJ8Ql7ndN9bF2znCxpwEzBG39R01zisKl9v6CBa69yBtqFxfdGNrq9p943UBrS0Kek7hsrHa3JR2irizelOyefT48fiOVm9LV8W81XScpl2CYpcaW1BrdUQKySgxILl-RoUFwpGI-XCKVGigLXliCXPZG6lsly6EtIpuTvmDoX2PcbObJs-1MNLwwEUyxgXeqDuj1QsfGfH1qYNfmfDwQAz41YGzGmr_-CfJvyBpnVl-gv7FWm1</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>2116070249</pqid></control><display><type>conference_proceeding</type><title>A quadratic regression modelling on paddy production in the area of Perlis</title><source>AIP Journals Complete</source><creator>Goh, Aizat Hanis Annas ; Ali, Zalila ; Nor, Norlida Mohd ; Baharum, Adam ; Ahmad, Wan Muhamad Amir W.</creator><contributor>Jalil, Masita Abd ; Rudrusamy, Gobithaasan ; Rahim, Hanafi A. ; Hasni, Roslan ; Salleh, Zabidin ; Salleh, Hassilah ; Lola, Muhamad Safiih</contributor><creatorcontrib>Goh, Aizat Hanis Annas ; Ali, Zalila ; Nor, Norlida Mohd ; Baharum, Adam ; Ahmad, Wan Muhamad Amir W. ; Jalil, Masita Abd ; Rudrusamy, Gobithaasan ; Rahim, Hanafi A. ; Hasni, Roslan ; Salleh, Zabidin ; Salleh, Hassilah ; Lola, Muhamad Safiih</creatorcontrib><description>Polynomial regression models are useful in situations in which the relationship between a response variable and predictor variables is curvilinear. Polynomial regression fits the nonlinear relationship into a least squares linear regression model by decomposing the predictor variables into a kth order polynomial. The polynomial order determines the number of inflexions on the curvilinear fitted line. A second order polynomial forms a quadratic expression (parabolic curve) with either a single maximum or minimum, a third order polynomial forms a cubic expression with both a relative maximum and a minimum. This study used paddy data in the area of Perlis to model paddy production based on paddy cultivation characteristics and environmental characteristics. The results indicated that a quadratic regression model best fits the data and paddy production is affected by urea fertilizer application and the interaction between amount of average rainfall and percentage of area defected by pest and disease. Urea fertilizer application has a quadratic effect in the model which indicated that if the number of days of urea fertilizer application increased, paddy production is expected to decrease until it achieved a minimum value and paddy production is expected to increase at higher number of days of urea application. The decrease in paddy production with an increased in rainfall is greater, the higher the percentage of area defected by pest and disease.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/1.4995942</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Cultivation ; Fertilizers ; Polynomials ; Rainfall ; Regression models ; Ureas</subject><ispartof>AIP Conference Proceedings, 2017, Vol.1870 (1)</ispartof><rights>Author(s)</rights><rights>2017 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/acp/article-lookup/doi/10.1063/1.4995942$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>309,310,314,780,784,789,790,794,4512,23930,23931,25140,27924,27925,76384</link.rule.ids></links><search><contributor>Jalil, Masita Abd</contributor><contributor>Rudrusamy, Gobithaasan</contributor><contributor>Rahim, Hanafi A.</contributor><contributor>Hasni, Roslan</contributor><contributor>Salleh, Zabidin</contributor><contributor>Salleh, Hassilah</contributor><contributor>Lola, Muhamad Safiih</contributor><creatorcontrib>Goh, Aizat Hanis Annas</creatorcontrib><creatorcontrib>Ali, Zalila</creatorcontrib><creatorcontrib>Nor, Norlida Mohd</creatorcontrib><creatorcontrib>Baharum, Adam</creatorcontrib><creatorcontrib>Ahmad, Wan Muhamad Amir W.</creatorcontrib><title>A quadratic regression modelling on paddy production in the area of Perlis</title><title>AIP Conference Proceedings</title><description>Polynomial regression models are useful in situations in which the relationship between a response variable and predictor variables is curvilinear. Polynomial regression fits the nonlinear relationship into a least squares linear regression model by decomposing the predictor variables into a kth order polynomial. The polynomial order determines the number of inflexions on the curvilinear fitted line. A second order polynomial forms a quadratic expression (parabolic curve) with either a single maximum or minimum, a third order polynomial forms a cubic expression with both a relative maximum and a minimum. This study used paddy data in the area of Perlis to model paddy production based on paddy cultivation characteristics and environmental characteristics. The results indicated that a quadratic regression model best fits the data and paddy production is affected by urea fertilizer application and the interaction between amount of average rainfall and percentage of area defected by pest and disease. Urea fertilizer application has a quadratic effect in the model which indicated that if the number of days of urea fertilizer application increased, paddy production is expected to decrease until it achieved a minimum value and paddy production is expected to increase at higher number of days of urea application. The decrease in paddy production with an increased in rainfall is greater, the higher the percentage of area defected by pest and disease.</description><subject>Cultivation</subject><subject>Fertilizers</subject><subject>Polynomials</subject><subject>Rainfall</subject><subject>Regression models</subject><subject>Ureas</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2017</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNp9kFFLwzAUhYMoOKcP_oOAb0JnbpqkzeMYOpWBPij4FrLmdmZ0bZe0wv69LRv45tPlcD7OPRxCboHNgKn0AWZCa6kFPyMTkBKSTIE6JxPGtEi4SL8uyVWMW8a4zrJ8Ql7ndN9bF2znCxpwEzBG39R01zisKl9v6CBa69yBtqFxfdGNrq9p943UBrS0Kek7hsrHa3JR2irizelOyefT48fiOVm9LV8W81XScpl2CYpcaW1BrdUQKySgxILl-RoUFwpGI-XCKVGigLXliCXPZG6lsly6EtIpuTvmDoX2PcbObJs-1MNLwwEUyxgXeqDuj1QsfGfH1qYNfmfDwQAz41YGzGmr_-CfJvyBpnVl-gv7FWm1</recordid><startdate>20170807</startdate><enddate>20170807</enddate><creator>Goh, Aizat Hanis Annas</creator><creator>Ali, Zalila</creator><creator>Nor, Norlida Mohd</creator><creator>Baharum, Adam</creator><creator>Ahmad, Wan Muhamad Amir W.</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20170807</creationdate><title>A quadratic regression modelling on paddy production in the area of Perlis</title><author>Goh, Aizat Hanis Annas ; Ali, Zalila ; Nor, Norlida Mohd ; Baharum, Adam ; Ahmad, Wan Muhamad Amir W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p253t-e48699a16b6add451e5ec088b162461a16b324d64fe41ba2eef2758a56a25df13</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Cultivation</topic><topic>Fertilizers</topic><topic>Polynomials</topic><topic>Rainfall</topic><topic>Regression models</topic><topic>Ureas</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Goh, Aizat Hanis Annas</creatorcontrib><creatorcontrib>Ali, Zalila</creatorcontrib><creatorcontrib>Nor, Norlida Mohd</creatorcontrib><creatorcontrib>Baharum, Adam</creatorcontrib><creatorcontrib>Ahmad, Wan Muhamad Amir W.</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Goh, Aizat Hanis Annas</au><au>Ali, Zalila</au><au>Nor, Norlida Mohd</au><au>Baharum, Adam</au><au>Ahmad, Wan Muhamad Amir W.</au><au>Jalil, Masita Abd</au><au>Rudrusamy, Gobithaasan</au><au>Rahim, Hanafi A.</au><au>Hasni, Roslan</au><au>Salleh, Zabidin</au><au>Salleh, Hassilah</au><au>Lola, Muhamad Safiih</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A quadratic regression modelling on paddy production in the area of Perlis</atitle><btitle>AIP Conference Proceedings</btitle><date>2017-08-07</date><risdate>2017</risdate><volume>1870</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>Polynomial regression models are useful in situations in which the relationship between a response variable and predictor variables is curvilinear. Polynomial regression fits the nonlinear relationship into a least squares linear regression model by decomposing the predictor variables into a kth order polynomial. The polynomial order determines the number of inflexions on the curvilinear fitted line. A second order polynomial forms a quadratic expression (parabolic curve) with either a single maximum or minimum, a third order polynomial forms a cubic expression with both a relative maximum and a minimum. This study used paddy data in the area of Perlis to model paddy production based on paddy cultivation characteristics and environmental characteristics. The results indicated that a quadratic regression model best fits the data and paddy production is affected by urea fertilizer application and the interaction between amount of average rainfall and percentage of area defected by pest and disease. Urea fertilizer application has a quadratic effect in the model which indicated that if the number of days of urea fertilizer application increased, paddy production is expected to decrease until it achieved a minimum value and paddy production is expected to increase at higher number of days of urea application. The decrease in paddy production with an increased in rainfall is greater, the higher the percentage of area defected by pest and disease.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.4995942</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0094-243X |
ispartof | AIP Conference Proceedings, 2017, Vol.1870 (1) |
issn | 0094-243X 1551-7616 |
language | eng |
recordid | cdi_proquest_journals_2116070249 |
source | AIP Journals Complete |
subjects | Cultivation Fertilizers Polynomials Rainfall Regression models Ureas |
title | A quadratic regression modelling on paddy production in the area of Perlis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T05%3A33%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20quadratic%20regression%20modelling%20on%20paddy%20production%20in%20the%20area%20of%20Perlis&rft.btitle=AIP%20Conference%20Proceedings&rft.au=Goh,%20Aizat%20Hanis%20Annas&rft.date=2017-08-07&rft.volume=1870&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/1.4995942&rft_dat=%3Cproquest_scita%3E2116070249%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2116070249&rft_id=info:pmid/&rfr_iscdi=true |