Distributed and self-adaptive microfluidic cell cooling for CPV dense array receivers
Temperature non uniformities of the CPV receivers lead to mismatch losses. In order to deal with this issue, a cooling device, formed by a matrix of microfluidic cells with individually variable coolant flow rate, has been developed. This device tailors the distribution of the heat extraction capaci...
Gespeichert in:
Hauptverfasser: | , , , , , , , , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | |
container_title | |
container_volume | 1881 |
creator | Laguna, Gerard Barrau, Jérôme Fréchette, Luc Rosell, Joan Ibañez, Manel Vilarrubí, Montse Betancourt, Yina Azarkish, Hassan Collin, Louis-Michel Fernandez, Alvaro Sisó, Gonzalo |
description | Temperature non uniformities of the CPV receivers lead to mismatch losses. In order to deal with this issue, a cooling device, formed by a matrix of microfluidic cells with individually variable coolant flow rate, has been developed. This device tailors the distribution of the heat extraction capacity over the CPV receiver to the local cooling needs in order to reduce the temperature non uniformities with respect to microchannel devices when submitted to uniform or non-uniform illumination profiles. At equal average temperature of the CPV receiver, power generation applying the matrix of microfluidic cells with individually variable coolant flow rate is 9.7% higher than the one with conventional microchannel technology. |
doi_str_mv | 10.1063/1.5001444 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_proquest_journals_2116064352</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2116064352</sourcerecordid><originalsourceid>FETCH-LOGICAL-c362t-aab3e2e1bd69b2ac1c0897bcec3093b87c936ce024a4a032ce569c9b540eee1c3</originalsourceid><addsrcrecordid>eNp90E1LAzEQBuAgCtbqwX8Q8KSwdfKx2eYo9aNCQQ9WvIVsdlZTtpua7Bb6721p0ZungeGZl-El5JLBiIESt2yUAzAp5REZsDxnWaGYOiYDAC0zLsXHKTlLaQHAdVGMB2R-71MXfdl3WFHbVjRhU2e2sqvOr5EuvYuhbnpfeUcdNg11ITS-_aR1iHTy-k4rbBNSG6Pd0IgOt1cxnZOT2jYJLw5zSOaPD2-TaTZ7eXqe3M0yJxTvMmtLgRxZWSldcuuYg7EuSodOgBbluHBaKIfApZUWBHeYK-10mUtARObEkFzvc79sY1bRL23cmGC9md7NzG4HHApZgF6zrb3a21UM3z2mzixCH9vte4YzpkBJkfOtutmr5HxnOx_a31wGZlexYeZQ8X94HeIfNKuqFj8w5Xwi</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>2116064352</pqid></control><display><type>conference_proceeding</type><title>Distributed and self-adaptive microfluidic cell cooling for CPV dense array receivers</title><source>AIP Journals Complete</source><creator>Laguna, Gerard ; Barrau, Jérôme ; Fréchette, Luc ; Rosell, Joan ; Ibañez, Manel ; Vilarrubí, Montse ; Betancourt, Yina ; Azarkish, Hassan ; Collin, Louis-Michel ; Fernandez, Alvaro ; Sisó, Gonzalo</creator><contributor>Siefer, Gerald ; Hinzer, Karin ; Rey-Stolle, Ignacio</contributor><creatorcontrib>Laguna, Gerard ; Barrau, Jérôme ; Fréchette, Luc ; Rosell, Joan ; Ibañez, Manel ; Vilarrubí, Montse ; Betancourt, Yina ; Azarkish, Hassan ; Collin, Louis-Michel ; Fernandez, Alvaro ; Sisó, Gonzalo ; Siefer, Gerald ; Hinzer, Karin ; Rey-Stolle, Ignacio</creatorcontrib><description>Temperature non uniformities of the CPV receivers lead to mismatch losses. In order to deal with this issue, a cooling device, formed by a matrix of microfluidic cells with individually variable coolant flow rate, has been developed. This device tailors the distribution of the heat extraction capacity over the CPV receiver to the local cooling needs in order to reduce the temperature non uniformities with respect to microchannel devices when submitted to uniform or non-uniform illumination profiles. At equal average temperature of the CPV receiver, power generation applying the matrix of microfluidic cells with individually variable coolant flow rate is 9.7% higher than the one with conventional microchannel technology.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/1.5001444</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Cooling ; Electric power generation ; Engineering Sciences ; Flow velocity ; Heat treatment ; Microchannels ; Receivers</subject><ispartof>AIP conference proceedings, 2017, Vol.1881 (1)</ispartof><rights>Author(s)</rights><rights>2017 Author(s). Published by AIP Publishing.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c362t-aab3e2e1bd69b2ac1c0897bcec3093b87c936ce024a4a032ce569c9b540eee1c3</citedby><orcidid>0000-0001-7138-0811</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/acp/article-lookup/doi/10.1063/1.5001444$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>309,310,314,776,780,785,786,790,881,4498,23909,23910,25118,27901,27902,76127</link.rule.ids><backlink>$$Uhttps://hal.science/hal-02074709$$DView record in HAL$$Hfree_for_read</backlink></links><search><contributor>Siefer, Gerald</contributor><contributor>Hinzer, Karin</contributor><contributor>Rey-Stolle, Ignacio</contributor><creatorcontrib>Laguna, Gerard</creatorcontrib><creatorcontrib>Barrau, Jérôme</creatorcontrib><creatorcontrib>Fréchette, Luc</creatorcontrib><creatorcontrib>Rosell, Joan</creatorcontrib><creatorcontrib>Ibañez, Manel</creatorcontrib><creatorcontrib>Vilarrubí, Montse</creatorcontrib><creatorcontrib>Betancourt, Yina</creatorcontrib><creatorcontrib>Azarkish, Hassan</creatorcontrib><creatorcontrib>Collin, Louis-Michel</creatorcontrib><creatorcontrib>Fernandez, Alvaro</creatorcontrib><creatorcontrib>Sisó, Gonzalo</creatorcontrib><title>Distributed and self-adaptive microfluidic cell cooling for CPV dense array receivers</title><title>AIP conference proceedings</title><description>Temperature non uniformities of the CPV receivers lead to mismatch losses. In order to deal with this issue, a cooling device, formed by a matrix of microfluidic cells with individually variable coolant flow rate, has been developed. This device tailors the distribution of the heat extraction capacity over the CPV receiver to the local cooling needs in order to reduce the temperature non uniformities with respect to microchannel devices when submitted to uniform or non-uniform illumination profiles. At equal average temperature of the CPV receiver, power generation applying the matrix of microfluidic cells with individually variable coolant flow rate is 9.7% higher than the one with conventional microchannel technology.</description><subject>Cooling</subject><subject>Electric power generation</subject><subject>Engineering Sciences</subject><subject>Flow velocity</subject><subject>Heat treatment</subject><subject>Microchannels</subject><subject>Receivers</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2017</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNp90E1LAzEQBuAgCtbqwX8Q8KSwdfKx2eYo9aNCQQ9WvIVsdlZTtpua7Bb6721p0ZungeGZl-El5JLBiIESt2yUAzAp5REZsDxnWaGYOiYDAC0zLsXHKTlLaQHAdVGMB2R-71MXfdl3WFHbVjRhU2e2sqvOr5EuvYuhbnpfeUcdNg11ITS-_aR1iHTy-k4rbBNSG6Pd0IgOt1cxnZOT2jYJLw5zSOaPD2-TaTZ7eXqe3M0yJxTvMmtLgRxZWSldcuuYg7EuSodOgBbluHBaKIfApZUWBHeYK-10mUtARObEkFzvc79sY1bRL23cmGC9md7NzG4HHApZgF6zrb3a21UM3z2mzixCH9vte4YzpkBJkfOtutmr5HxnOx_a31wGZlexYeZQ8X94HeIfNKuqFj8w5Xwi</recordid><startdate>20170906</startdate><enddate>20170906</enddate><creator>Laguna, Gerard</creator><creator>Barrau, Jérôme</creator><creator>Fréchette, Luc</creator><creator>Rosell, Joan</creator><creator>Ibañez, Manel</creator><creator>Vilarrubí, Montse</creator><creator>Betancourt, Yina</creator><creator>Azarkish, Hassan</creator><creator>Collin, Louis-Michel</creator><creator>Fernandez, Alvaro</creator><creator>Sisó, Gonzalo</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0001-7138-0811</orcidid></search><sort><creationdate>20170906</creationdate><title>Distributed and self-adaptive microfluidic cell cooling for CPV dense array receivers</title><author>Laguna, Gerard ; Barrau, Jérôme ; Fréchette, Luc ; Rosell, Joan ; Ibañez, Manel ; Vilarrubí, Montse ; Betancourt, Yina ; Azarkish, Hassan ; Collin, Louis-Michel ; Fernandez, Alvaro ; Sisó, Gonzalo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c362t-aab3e2e1bd69b2ac1c0897bcec3093b87c936ce024a4a032ce569c9b540eee1c3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Cooling</topic><topic>Electric power generation</topic><topic>Engineering Sciences</topic><topic>Flow velocity</topic><topic>Heat treatment</topic><topic>Microchannels</topic><topic>Receivers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Laguna, Gerard</creatorcontrib><creatorcontrib>Barrau, Jérôme</creatorcontrib><creatorcontrib>Fréchette, Luc</creatorcontrib><creatorcontrib>Rosell, Joan</creatorcontrib><creatorcontrib>Ibañez, Manel</creatorcontrib><creatorcontrib>Vilarrubí, Montse</creatorcontrib><creatorcontrib>Betancourt, Yina</creatorcontrib><creatorcontrib>Azarkish, Hassan</creatorcontrib><creatorcontrib>Collin, Louis-Michel</creatorcontrib><creatorcontrib>Fernandez, Alvaro</creatorcontrib><creatorcontrib>Sisó, Gonzalo</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Laguna, Gerard</au><au>Barrau, Jérôme</au><au>Fréchette, Luc</au><au>Rosell, Joan</au><au>Ibañez, Manel</au><au>Vilarrubí, Montse</au><au>Betancourt, Yina</au><au>Azarkish, Hassan</au><au>Collin, Louis-Michel</au><au>Fernandez, Alvaro</au><au>Sisó, Gonzalo</au><au>Siefer, Gerald</au><au>Hinzer, Karin</au><au>Rey-Stolle, Ignacio</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Distributed and self-adaptive microfluidic cell cooling for CPV dense array receivers</atitle><btitle>AIP conference proceedings</btitle><date>2017-09-06</date><risdate>2017</risdate><volume>1881</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>Temperature non uniformities of the CPV receivers lead to mismatch losses. In order to deal with this issue, a cooling device, formed by a matrix of microfluidic cells with individually variable coolant flow rate, has been developed. This device tailors the distribution of the heat extraction capacity over the CPV receiver to the local cooling needs in order to reduce the temperature non uniformities with respect to microchannel devices when submitted to uniform or non-uniform illumination profiles. At equal average temperature of the CPV receiver, power generation applying the matrix of microfluidic cells with individually variable coolant flow rate is 9.7% higher than the one with conventional microchannel technology.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.5001444</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0001-7138-0811</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0094-243X |
ispartof | AIP conference proceedings, 2017, Vol.1881 (1) |
issn | 0094-243X 1551-7616 |
language | eng |
recordid | cdi_proquest_journals_2116064352 |
source | AIP Journals Complete |
subjects | Cooling Electric power generation Engineering Sciences Flow velocity Heat treatment Microchannels Receivers |
title | Distributed and self-adaptive microfluidic cell cooling for CPV dense array receivers |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T04%3A26%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Distributed%20and%20self-adaptive%20microfluidic%20cell%20cooling%20for%20CPV%20dense%20array%20receivers&rft.btitle=AIP%20conference%20proceedings&rft.au=Laguna,%20Gerard&rft.date=2017-09-06&rft.volume=1881&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/1.5001444&rft_dat=%3Cproquest_hal_p%3E2116064352%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2116064352&rft_id=info:pmid/&rfr_iscdi=true |