Optimal boundary temperature control in the model of radiative heat transfer

An optimal control problem for a system of semilinear elliptic partial differential equations describing the radiative-conductive heat transfer is considered. The specific of this problem is that the control, the boundary temperature field, appears nonlinearly in boundary conditions. The solvability...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Chebotarev, Alexander Yu, Kovtanyuk, Andrey E., Botkin, Nikolai D.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page
container_title
container_volume 1907
creator Chebotarev, Alexander Yu
Kovtanyuk, Andrey E.
Botkin, Nikolai D.
description An optimal control problem for a system of semilinear elliptic partial differential equations describing the radiative-conductive heat transfer is considered. The specific of this problem is that the control, the boundary temperature field, appears nonlinearly in boundary conditions. The solvability of this control problem is proven if the set of admissible controls is compact in a certain functional space. An example of nonexistence is given in the case where the set of admissible control is not compact. Necessary optimality conditions are obtained without any a priory smallness and regularity assumptions.
doi_str_mv 10.1063/1.5012666
format Conference Proceeding
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_journals_2116054698</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2116054698</sourcerecordid><originalsourceid>FETCH-LOGICAL-p253t-726374a1fddbdea7ee67677e505c7be1536a1c1e14ebbc2ec5e5dede93094c6f3</originalsourceid><addsrcrecordid>eNp9kE9LwzAYxoMoOKcHv0HAm9CZN2mS9ShDp1DYRcFbSJO3rKNrapoO9u2tbODN03P58fwj5B7YApgST7CQDLhS6oLMQErItAJ1SWaMFXnGc_F1TW6GYccYL7Rezki56VOzty2twth5G4804b7HaNMYkbrQpRha2nQ0bZHug8eWhppG6xubmgPSLdpEU7TdUGO8JVe1bQe8O-ucfL6-fKzesnKzfl89l1nPpUiZ5kro3ELtfeXRakSlldYomXS6QpBCWXCAkGNVOY5OovTosRDTCKdqMScPJ98-hu8Rh2R2YYzdFGk4gGIyV8Vyoh5P1OCaNLUNnenjtDUeDTDz-5YBc37rP_gQ4h9oel-LH0J7bBw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>2116054698</pqid></control><display><type>conference_proceeding</type><title>Optimal boundary temperature control in the model of radiative heat transfer</title><source>AIP Journals Complete</source><creator>Chebotarev, Alexander Yu ; Kovtanyuk, Andrey E. ; Botkin, Nikolai D.</creator><contributor>Popov, Sergey V. ; Ivanova, Anna O. ; Egorov, Ivan E. ; Antonov, Mikhail Yu ; Vabishchevich, Petr N. ; Lazarev, Nyurgun P. ; Troeva, Marianna S. ; Grigor’ev, Yuri M.</contributor><creatorcontrib>Chebotarev, Alexander Yu ; Kovtanyuk, Andrey E. ; Botkin, Nikolai D. ; Popov, Sergey V. ; Ivanova, Anna O. ; Egorov, Ivan E. ; Antonov, Mikhail Yu ; Vabishchevich, Petr N. ; Lazarev, Nyurgun P. ; Troeva, Marianna S. ; Grigor’ev, Yuri M.</creatorcontrib><description>An optimal control problem for a system of semilinear elliptic partial differential equations describing the radiative-conductive heat transfer is considered. The specific of this problem is that the control, the boundary temperature field, appears nonlinearly in boundary conditions. The solvability of this control problem is proven if the set of admissible controls is compact in a certain functional space. An example of nonexistence is given in the case where the set of admissible control is not compact. Necessary optimality conditions are obtained without any a priory smallness and regularity assumptions.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/1.5012666</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Boundary conditions ; Conductive heat transfer ; Elliptic functions ; Nonlinear programming ; Optimal control ; Optimization ; Partial differential equations ; Radiative heat transfer ; Temperature control ; Temperature distribution</subject><ispartof>AIP Conference Proceedings, 2017, Vol.1907 (1)</ispartof><rights>Author(s)</rights><rights>2017 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/acp/article-lookup/doi/10.1063/1.5012666$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>309,310,314,780,784,789,790,794,4512,23930,23931,25140,27924,27925,76384</link.rule.ids></links><search><contributor>Popov, Sergey V.</contributor><contributor>Ivanova, Anna O.</contributor><contributor>Egorov, Ivan E.</contributor><contributor>Antonov, Mikhail Yu</contributor><contributor>Vabishchevich, Petr N.</contributor><contributor>Lazarev, Nyurgun P.</contributor><contributor>Troeva, Marianna S.</contributor><contributor>Grigor’ev, Yuri M.</contributor><creatorcontrib>Chebotarev, Alexander Yu</creatorcontrib><creatorcontrib>Kovtanyuk, Andrey E.</creatorcontrib><creatorcontrib>Botkin, Nikolai D.</creatorcontrib><title>Optimal boundary temperature control in the model of radiative heat transfer</title><title>AIP Conference Proceedings</title><description>An optimal control problem for a system of semilinear elliptic partial differential equations describing the radiative-conductive heat transfer is considered. The specific of this problem is that the control, the boundary temperature field, appears nonlinearly in boundary conditions. The solvability of this control problem is proven if the set of admissible controls is compact in a certain functional space. An example of nonexistence is given in the case where the set of admissible control is not compact. Necessary optimality conditions are obtained without any a priory smallness and regularity assumptions.</description><subject>Boundary conditions</subject><subject>Conductive heat transfer</subject><subject>Elliptic functions</subject><subject>Nonlinear programming</subject><subject>Optimal control</subject><subject>Optimization</subject><subject>Partial differential equations</subject><subject>Radiative heat transfer</subject><subject>Temperature control</subject><subject>Temperature distribution</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2017</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNp9kE9LwzAYxoMoOKcHv0HAm9CZN2mS9ShDp1DYRcFbSJO3rKNrapoO9u2tbODN03P58fwj5B7YApgST7CQDLhS6oLMQErItAJ1SWaMFXnGc_F1TW6GYccYL7Rezki56VOzty2twth5G4804b7HaNMYkbrQpRha2nQ0bZHug8eWhppG6xubmgPSLdpEU7TdUGO8JVe1bQe8O-ucfL6-fKzesnKzfl89l1nPpUiZ5kro3ELtfeXRakSlldYomXS6QpBCWXCAkGNVOY5OovTosRDTCKdqMScPJ98-hu8Rh2R2YYzdFGk4gGIyV8Vyoh5P1OCaNLUNnenjtDUeDTDz-5YBc37rP_gQ4h9oel-LH0J7bBw</recordid><startdate>20171114</startdate><enddate>20171114</enddate><creator>Chebotarev, Alexander Yu</creator><creator>Kovtanyuk, Andrey E.</creator><creator>Botkin, Nikolai D.</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20171114</creationdate><title>Optimal boundary temperature control in the model of radiative heat transfer</title><author>Chebotarev, Alexander Yu ; Kovtanyuk, Andrey E. ; Botkin, Nikolai D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p253t-726374a1fddbdea7ee67677e505c7be1536a1c1e14ebbc2ec5e5dede93094c6f3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Boundary conditions</topic><topic>Conductive heat transfer</topic><topic>Elliptic functions</topic><topic>Nonlinear programming</topic><topic>Optimal control</topic><topic>Optimization</topic><topic>Partial differential equations</topic><topic>Radiative heat transfer</topic><topic>Temperature control</topic><topic>Temperature distribution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chebotarev, Alexander Yu</creatorcontrib><creatorcontrib>Kovtanyuk, Andrey E.</creatorcontrib><creatorcontrib>Botkin, Nikolai D.</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chebotarev, Alexander Yu</au><au>Kovtanyuk, Andrey E.</au><au>Botkin, Nikolai D.</au><au>Popov, Sergey V.</au><au>Ivanova, Anna O.</au><au>Egorov, Ivan E.</au><au>Antonov, Mikhail Yu</au><au>Vabishchevich, Petr N.</au><au>Lazarev, Nyurgun P.</au><au>Troeva, Marianna S.</au><au>Grigor’ev, Yuri M.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Optimal boundary temperature control in the model of radiative heat transfer</atitle><btitle>AIP Conference Proceedings</btitle><date>2017-11-14</date><risdate>2017</risdate><volume>1907</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>An optimal control problem for a system of semilinear elliptic partial differential equations describing the radiative-conductive heat transfer is considered. The specific of this problem is that the control, the boundary temperature field, appears nonlinearly in boundary conditions. The solvability of this control problem is proven if the set of admissible controls is compact in a certain functional space. An example of nonexistence is given in the case where the set of admissible control is not compact. Necessary optimality conditions are obtained without any a priory smallness and regularity assumptions.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.5012666</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0094-243X
ispartof AIP Conference Proceedings, 2017, Vol.1907 (1)
issn 0094-243X
1551-7616
language eng
recordid cdi_proquest_journals_2116054698
source AIP Journals Complete
subjects Boundary conditions
Conductive heat transfer
Elliptic functions
Nonlinear programming
Optimal control
Optimization
Partial differential equations
Radiative heat transfer
Temperature control
Temperature distribution
title Optimal boundary temperature control in the model of radiative heat transfer
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T19%3A03%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Optimal%20boundary%20temperature%20control%20in%20the%20model%20of%20radiative%20heat%20transfer&rft.btitle=AIP%20Conference%20Proceedings&rft.au=Chebotarev,%20Alexander%20Yu&rft.date=2017-11-14&rft.volume=1907&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/1.5012666&rft_dat=%3Cproquest_scita%3E2116054698%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2116054698&rft_id=info:pmid/&rfr_iscdi=true