A diffusion model of protected population on bilocal habitat with generalized resource
A model of population distribution in a two-dimensional area divided by an ecological barrier, i.e. the boundaries of natural reserve, is considered. Distribution of the population is defined by diffusion, directed migrations and areal resource. The exchange of specimens occurs between two parts of...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | |
container_title | |
container_volume | 1907 |
creator | Vasilyev, Maxim D. Trofimtsev, Yuri I. Vasilyeva, Natalya V. |
description | A model of population distribution in a two-dimensional area divided by an ecological barrier, i.e. the boundaries of natural reserve, is considered. Distribution of the population is defined by diffusion, directed migrations and areal resource. The exchange of specimens occurs between two parts of the habitat. The mathematical model is presented in the form of a boundary value problem for a system of non-linear parabolic equations with variable parameters of diffusion and growth function. The splitting space variables, sweep method and simple iteration methods were used for the numerical solution of a system. A set of programs was coded in Python. Numerical simulation results for the two-dimensional unsteady non-linear problem are analyzed in detail. The influence of migration flow coefficients and functions of natural birth/death ratio on the distributions of population densities is investigated. The results of the research would allow to describe the conditions of the stable and sustainable existence of populations in bilocal habitat containing the protected and non-protected zones. |
doi_str_mv | 10.1063/1.5012636 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_journals_2116053584</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2116053584</sourcerecordid><originalsourceid>FETCH-LOGICAL-p253t-3cccb149862688a4431d632656b1f10c4e64a77fb0f960ceb6756ff9c595e3163</originalsourceid><addsrcrecordid>eNp9kEtLAzEQx4MoWKsHv0HAm7A1k8fs7rEUX1DwouItZLOJ3bJt1t2sop_elBa8CQNzmB_zfxByCWwGDMUNzBQDjgKPyASUgixHwGMyYayUGZfi7ZScDcOaMV7meTEhr3NaN96PQxO2dBNq19LgadeH6Gx0Ne1CN7Ym7q5pqqYN1rR0Zaommki_mrii727retM2Pwnv3RDG3rpzcuJNO7iLw56Sl7vb58VDtny6f1zMl1nHlYiZsNZWIMsCORaFkVJAjYKjwgo8MCsdSpPnvmK-RGZdhblC70urSuUEoJiSq_3f5PhjdEPU66S_TZKaAyBTQhUyUdd7arA72ymM7vpmY_pvDUzvetOgD739B3-G_g_UXe3FLyKdbi4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>2116053584</pqid></control><display><type>conference_proceeding</type><title>A diffusion model of protected population on bilocal habitat with generalized resource</title><source>American Institute of Physics (AIP) Journals</source><creator>Vasilyev, Maxim D. ; Trofimtsev, Yuri I. ; Vasilyeva, Natalya V.</creator><contributor>Popov, Sergey V. ; Ivanova, Anna O. ; Egorov, Ivan E. ; Antonov, Mikhail Yu ; Vabishchevich, Petr N. ; Lazarev, Nyurgun P. ; Troeva, Marianna S. ; Grigor’ev, Yuri M.</contributor><creatorcontrib>Vasilyev, Maxim D. ; Trofimtsev, Yuri I. ; Vasilyeva, Natalya V. ; Popov, Sergey V. ; Ivanova, Anna O. ; Egorov, Ivan E. ; Antonov, Mikhail Yu ; Vabishchevich, Petr N. ; Lazarev, Nyurgun P. ; Troeva, Marianna S. ; Grigor’ev, Yuri M.</creatorcontrib><description>A model of population distribution in a two-dimensional area divided by an ecological barrier, i.e. the boundaries of natural reserve, is considered. Distribution of the population is defined by diffusion, directed migrations and areal resource. The exchange of specimens occurs between two parts of the habitat. The mathematical model is presented in the form of a boundary value problem for a system of non-linear parabolic equations with variable parameters of diffusion and growth function. The splitting space variables, sweep method and simple iteration methods were used for the numerical solution of a system. A set of programs was coded in Python. Numerical simulation results for the two-dimensional unsteady non-linear problem are analyzed in detail. The influence of migration flow coefficients and functions of natural birth/death ratio on the distributions of population densities is investigated. The results of the research would allow to describe the conditions of the stable and sustainable existence of populations in bilocal habitat containing the protected and non-protected zones.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/1.5012636</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Boundary value problems ; Computer simulation ; Diffusion ; Flow coefficients ; Iterative methods ; Mathematical models ; Migration ; Nonlinear analysis ; Nonlinear equations ; Population ; Population distribution ; Two dimensional analysis ; Two dimensional models</subject><ispartof>AIP conference proceedings, 2017, Vol.1907 (1)</ispartof><rights>Author(s)</rights><rights>2017 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/acp/article-lookup/doi/10.1063/1.5012636$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>309,310,314,776,780,785,786,790,4497,23910,23911,25119,27903,27904,76131</link.rule.ids></links><search><contributor>Popov, Sergey V.</contributor><contributor>Ivanova, Anna O.</contributor><contributor>Egorov, Ivan E.</contributor><contributor>Antonov, Mikhail Yu</contributor><contributor>Vabishchevich, Petr N.</contributor><contributor>Lazarev, Nyurgun P.</contributor><contributor>Troeva, Marianna S.</contributor><contributor>Grigor’ev, Yuri M.</contributor><creatorcontrib>Vasilyev, Maxim D.</creatorcontrib><creatorcontrib>Trofimtsev, Yuri I.</creatorcontrib><creatorcontrib>Vasilyeva, Natalya V.</creatorcontrib><title>A diffusion model of protected population on bilocal habitat with generalized resource</title><title>AIP conference proceedings</title><description>A model of population distribution in a two-dimensional area divided by an ecological barrier, i.e. the boundaries of natural reserve, is considered. Distribution of the population is defined by diffusion, directed migrations and areal resource. The exchange of specimens occurs between two parts of the habitat. The mathematical model is presented in the form of a boundary value problem for a system of non-linear parabolic equations with variable parameters of diffusion and growth function. The splitting space variables, sweep method and simple iteration methods were used for the numerical solution of a system. A set of programs was coded in Python. Numerical simulation results for the two-dimensional unsteady non-linear problem are analyzed in detail. The influence of migration flow coefficients and functions of natural birth/death ratio on the distributions of population densities is investigated. The results of the research would allow to describe the conditions of the stable and sustainable existence of populations in bilocal habitat containing the protected and non-protected zones.</description><subject>Boundary value problems</subject><subject>Computer simulation</subject><subject>Diffusion</subject><subject>Flow coefficients</subject><subject>Iterative methods</subject><subject>Mathematical models</subject><subject>Migration</subject><subject>Nonlinear analysis</subject><subject>Nonlinear equations</subject><subject>Population</subject><subject>Population distribution</subject><subject>Two dimensional analysis</subject><subject>Two dimensional models</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2017</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNp9kEtLAzEQx4MoWKsHv0HAm7A1k8fs7rEUX1DwouItZLOJ3bJt1t2sop_elBa8CQNzmB_zfxByCWwGDMUNzBQDjgKPyASUgixHwGMyYayUGZfi7ZScDcOaMV7meTEhr3NaN96PQxO2dBNq19LgadeH6Gx0Ne1CN7Ym7q5pqqYN1rR0Zaommki_mrii727retM2Pwnv3RDG3rpzcuJNO7iLw56Sl7vb58VDtny6f1zMl1nHlYiZsNZWIMsCORaFkVJAjYKjwgo8MCsdSpPnvmK-RGZdhblC70urSuUEoJiSq_3f5PhjdEPU66S_TZKaAyBTQhUyUdd7arA72ymM7vpmY_pvDUzvetOgD739B3-G_g_UXe3FLyKdbi4</recordid><startdate>20171114</startdate><enddate>20171114</enddate><creator>Vasilyev, Maxim D.</creator><creator>Trofimtsev, Yuri I.</creator><creator>Vasilyeva, Natalya V.</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20171114</creationdate><title>A diffusion model of protected population on bilocal habitat with generalized resource</title><author>Vasilyev, Maxim D. ; Trofimtsev, Yuri I. ; Vasilyeva, Natalya V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p253t-3cccb149862688a4431d632656b1f10c4e64a77fb0f960ceb6756ff9c595e3163</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Boundary value problems</topic><topic>Computer simulation</topic><topic>Diffusion</topic><topic>Flow coefficients</topic><topic>Iterative methods</topic><topic>Mathematical models</topic><topic>Migration</topic><topic>Nonlinear analysis</topic><topic>Nonlinear equations</topic><topic>Population</topic><topic>Population distribution</topic><topic>Two dimensional analysis</topic><topic>Two dimensional models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vasilyev, Maxim D.</creatorcontrib><creatorcontrib>Trofimtsev, Yuri I.</creatorcontrib><creatorcontrib>Vasilyeva, Natalya V.</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vasilyev, Maxim D.</au><au>Trofimtsev, Yuri I.</au><au>Vasilyeva, Natalya V.</au><au>Popov, Sergey V.</au><au>Ivanova, Anna O.</au><au>Egorov, Ivan E.</au><au>Antonov, Mikhail Yu</au><au>Vabishchevich, Petr N.</au><au>Lazarev, Nyurgun P.</au><au>Troeva, Marianna S.</au><au>Grigor’ev, Yuri M.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A diffusion model of protected population on bilocal habitat with generalized resource</atitle><btitle>AIP conference proceedings</btitle><date>2017-11-14</date><risdate>2017</risdate><volume>1907</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>A model of population distribution in a two-dimensional area divided by an ecological barrier, i.e. the boundaries of natural reserve, is considered. Distribution of the population is defined by diffusion, directed migrations and areal resource. The exchange of specimens occurs between two parts of the habitat. The mathematical model is presented in the form of a boundary value problem for a system of non-linear parabolic equations with variable parameters of diffusion and growth function. The splitting space variables, sweep method and simple iteration methods were used for the numerical solution of a system. A set of programs was coded in Python. Numerical simulation results for the two-dimensional unsteady non-linear problem are analyzed in detail. The influence of migration flow coefficients and functions of natural birth/death ratio on the distributions of population densities is investigated. The results of the research would allow to describe the conditions of the stable and sustainable existence of populations in bilocal habitat containing the protected and non-protected zones.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.5012636</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0094-243X |
ispartof | AIP conference proceedings, 2017, Vol.1907 (1) |
issn | 0094-243X 1551-7616 |
language | eng |
recordid | cdi_proquest_journals_2116053584 |
source | American Institute of Physics (AIP) Journals |
subjects | Boundary value problems Computer simulation Diffusion Flow coefficients Iterative methods Mathematical models Migration Nonlinear analysis Nonlinear equations Population Population distribution Two dimensional analysis Two dimensional models |
title | A diffusion model of protected population on bilocal habitat with generalized resource |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T17%3A46%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20diffusion%20model%20of%20protected%20population%20on%20bilocal%20habitat%20with%20generalized%20resource&rft.btitle=AIP%20conference%20proceedings&rft.au=Vasilyev,%20Maxim%20D.&rft.date=2017-11-14&rft.volume=1907&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/1.5012636&rft_dat=%3Cproquest_scita%3E2116053584%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2116053584&rft_id=info:pmid/&rfr_iscdi=true |