Acute asthma severity identification of expert system flow in emergency department

Integration of computerized system in healthcare management help in smoothening the documentation of patient records, highly accesses of knowledge and clinical practices guideline, and advice on decision making. Exploit the advancement of artificial intelligent such as fuzzy logic and rule-based rea...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Sharif, Nurul Atikah Mohd, Ahmad, Norazura, Ahmad, Nazihah, Desa, Wan Laailatul Hanim Mat
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page
container_title
container_volume 1905
creator Sharif, Nurul Atikah Mohd
Ahmad, Norazura
Ahmad, Nazihah
Desa, Wan Laailatul Hanim Mat
description Integration of computerized system in healthcare management help in smoothening the documentation of patient records, highly accesses of knowledge and clinical practices guideline, and advice on decision making. Exploit the advancement of artificial intelligent such as fuzzy logic and rule-based reasoning may improve the management of emergency department in terms of uncertainty condition and medical practices adherence towards clinical guideline. This paper presenting details of the emergency department flow for acute asthma severity identification with the embedding of acute asthma severity identification expert system (AASIES). Currently, AASIES is still in preliminary stage of system validation. However, the implementation of AASIES in asthma bay management is hope can reduce the usage of paper for manual documentation and be a pioneer for the development of a more complex decision support system to smoothen the ED management and more systematic.
doi_str_mv 10.1063/1.5012215
format Conference Proceeding
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_journals_2116024039</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2116024039</sourcerecordid><originalsourceid>FETCH-LOGICAL-p253t-4d9c50f1f9594b2d4a67c6899a268e213094ea1c07c4cfc968ad472d69fa97f43</originalsourceid><addsrcrecordid>eNp9kEtLAzEUhYMoWKsL_0HAnTA1N5PJTJal-IKCIAruQszcaErnYZJW59872oI7V2fznXPvOYScA5sBk_kVzAoGnENxQCZQFJCVEuQhmTCmRMZF_nJMTmJcMcZVWVYT8ji3m4TUxPTeGBpxi8Gngfoa2-Sdtyb5rqWdo_jVY0g0DjFhQ926-6S-pdhgeMPWDrTG3oTUjLZTcuTMOuLZXqfk-eb6aXGXLR9u7xfzZdbzIk-ZqJUtmAOnCiVeeS2MLK2slDJcVsghHz9GA5aVVlhnlaxMLUpeS-WMKp3Ip-Ril9uH7mODMelVtwnteFJzAMm4YLkaqcsdFa1Pv210H3xjwqC3XdCg93vpvnb_wcD0z8B_hvwbCpZtZw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>2116024039</pqid></control><display><type>conference_proceeding</type><title>Acute asthma severity identification of expert system flow in emergency department</title><source>AIP Journals Complete</source><creator>Sharif, Nurul Atikah Mohd ; Ahmad, Norazura ; Ahmad, Nazihah ; Desa, Wan Laailatul Hanim Mat</creator><contributor>Zulkepli, Jafri ; Nawawi, Mohd Kamal Mohd ; Aziz, Nazrina ; Rohni, Azizah Mohd ; Ibrahim, Haslinda</contributor><creatorcontrib>Sharif, Nurul Atikah Mohd ; Ahmad, Norazura ; Ahmad, Nazihah ; Desa, Wan Laailatul Hanim Mat ; Zulkepli, Jafri ; Nawawi, Mohd Kamal Mohd ; Aziz, Nazrina ; Rohni, Azizah Mohd ; Ibrahim, Haslinda</creatorcontrib><description>Integration of computerized system in healthcare management help in smoothening the documentation of patient records, highly accesses of knowledge and clinical practices guideline, and advice on decision making. Exploit the advancement of artificial intelligent such as fuzzy logic and rule-based reasoning may improve the management of emergency department in terms of uncertainty condition and medical practices adherence towards clinical guideline. This paper presenting details of the emergency department flow for acute asthma severity identification with the embedding of acute asthma severity identification expert system (AASIES). Currently, AASIES is still in preliminary stage of system validation. However, the implementation of AASIES in asthma bay management is hope can reduce the usage of paper for manual documentation and be a pioneer for the development of a more complex decision support system to smoothen the ED management and more systematic.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/1.5012215</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Asthma ; Decision making ; Documentation ; Embedded systems ; Emergency management ; Emergency medical services ; Emergency services ; Expert systems ; Fuzzy logic ; Support systems</subject><ispartof>AIP conference proceedings, 2017, Vol.1905 (1)</ispartof><rights>Author(s)</rights><rights>2017 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/acp/article-lookup/doi/10.1063/1.5012215$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>309,310,314,776,780,785,786,790,4498,23909,23910,25118,27901,27902,76127</link.rule.ids></links><search><contributor>Zulkepli, Jafri</contributor><contributor>Nawawi, Mohd Kamal Mohd</contributor><contributor>Aziz, Nazrina</contributor><contributor>Rohni, Azizah Mohd</contributor><contributor>Ibrahim, Haslinda</contributor><creatorcontrib>Sharif, Nurul Atikah Mohd</creatorcontrib><creatorcontrib>Ahmad, Norazura</creatorcontrib><creatorcontrib>Ahmad, Nazihah</creatorcontrib><creatorcontrib>Desa, Wan Laailatul Hanim Mat</creatorcontrib><title>Acute asthma severity identification of expert system flow in emergency department</title><title>AIP conference proceedings</title><description>Integration of computerized system in healthcare management help in smoothening the documentation of patient records, highly accesses of knowledge and clinical practices guideline, and advice on decision making. Exploit the advancement of artificial intelligent such as fuzzy logic and rule-based reasoning may improve the management of emergency department in terms of uncertainty condition and medical practices adherence towards clinical guideline. This paper presenting details of the emergency department flow for acute asthma severity identification with the embedding of acute asthma severity identification expert system (AASIES). Currently, AASIES is still in preliminary stage of system validation. However, the implementation of AASIES in asthma bay management is hope can reduce the usage of paper for manual documentation and be a pioneer for the development of a more complex decision support system to smoothen the ED management and more systematic.</description><subject>Asthma</subject><subject>Decision making</subject><subject>Documentation</subject><subject>Embedded systems</subject><subject>Emergency management</subject><subject>Emergency medical services</subject><subject>Emergency services</subject><subject>Expert systems</subject><subject>Fuzzy logic</subject><subject>Support systems</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2017</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNp9kEtLAzEUhYMoWKsL_0HAnTA1N5PJTJal-IKCIAruQszcaErnYZJW59872oI7V2fznXPvOYScA5sBk_kVzAoGnENxQCZQFJCVEuQhmTCmRMZF_nJMTmJcMcZVWVYT8ji3m4TUxPTeGBpxi8Gngfoa2-Sdtyb5rqWdo_jVY0g0DjFhQ926-6S-pdhgeMPWDrTG3oTUjLZTcuTMOuLZXqfk-eb6aXGXLR9u7xfzZdbzIk-ZqJUtmAOnCiVeeS2MLK2slDJcVsghHz9GA5aVVlhnlaxMLUpeS-WMKp3Ip-Ril9uH7mODMelVtwnteFJzAMm4YLkaqcsdFa1Pv210H3xjwqC3XdCg93vpvnb_wcD0z8B_hvwbCpZtZw</recordid><startdate>20171122</startdate><enddate>20171122</enddate><creator>Sharif, Nurul Atikah Mohd</creator><creator>Ahmad, Norazura</creator><creator>Ahmad, Nazihah</creator><creator>Desa, Wan Laailatul Hanim Mat</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20171122</creationdate><title>Acute asthma severity identification of expert system flow in emergency department</title><author>Sharif, Nurul Atikah Mohd ; Ahmad, Norazura ; Ahmad, Nazihah ; Desa, Wan Laailatul Hanim Mat</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p253t-4d9c50f1f9594b2d4a67c6899a268e213094ea1c07c4cfc968ad472d69fa97f43</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Asthma</topic><topic>Decision making</topic><topic>Documentation</topic><topic>Embedded systems</topic><topic>Emergency management</topic><topic>Emergency medical services</topic><topic>Emergency services</topic><topic>Expert systems</topic><topic>Fuzzy logic</topic><topic>Support systems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sharif, Nurul Atikah Mohd</creatorcontrib><creatorcontrib>Ahmad, Norazura</creatorcontrib><creatorcontrib>Ahmad, Nazihah</creatorcontrib><creatorcontrib>Desa, Wan Laailatul Hanim Mat</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sharif, Nurul Atikah Mohd</au><au>Ahmad, Norazura</au><au>Ahmad, Nazihah</au><au>Desa, Wan Laailatul Hanim Mat</au><au>Zulkepli, Jafri</au><au>Nawawi, Mohd Kamal Mohd</au><au>Aziz, Nazrina</au><au>Rohni, Azizah Mohd</au><au>Ibrahim, Haslinda</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Acute asthma severity identification of expert system flow in emergency department</atitle><btitle>AIP conference proceedings</btitle><date>2017-11-22</date><risdate>2017</risdate><volume>1905</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>Integration of computerized system in healthcare management help in smoothening the documentation of patient records, highly accesses of knowledge and clinical practices guideline, and advice on decision making. Exploit the advancement of artificial intelligent such as fuzzy logic and rule-based reasoning may improve the management of emergency department in terms of uncertainty condition and medical practices adherence towards clinical guideline. This paper presenting details of the emergency department flow for acute asthma severity identification with the embedding of acute asthma severity identification expert system (AASIES). Currently, AASIES is still in preliminary stage of system validation. However, the implementation of AASIES in asthma bay management is hope can reduce the usage of paper for manual documentation and be a pioneer for the development of a more complex decision support system to smoothen the ED management and more systematic.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.5012215</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0094-243X
ispartof AIP conference proceedings, 2017, Vol.1905 (1)
issn 0094-243X
1551-7616
language eng
recordid cdi_proquest_journals_2116024039
source AIP Journals Complete
subjects Asthma
Decision making
Documentation
Embedded systems
Emergency management
Emergency medical services
Emergency services
Expert systems
Fuzzy logic
Support systems
title Acute asthma severity identification of expert system flow in emergency department
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T10%3A37%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Acute%20asthma%20severity%20identification%20of%20expert%20system%20flow%20in%20emergency%20department&rft.btitle=AIP%20conference%20proceedings&rft.au=Sharif,%20Nurul%20Atikah%20Mohd&rft.date=2017-11-22&rft.volume=1905&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/1.5012215&rft_dat=%3Cproquest_scita%3E2116024039%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2116024039&rft_id=info:pmid/&rfr_iscdi=true