Application of approximation theory for sine series with coefficient from class supremum bounded variation sequences of first type

The coefficients of sine series which is monotone sequence (MS) have been generalized to General Monotone Sequences (GMS), Group Bounded Variation Sequences (GBVS), Mean Value Bounded Variation Sequences (MVBVS) and Supremum Bounded Variation Sequences of the first type (SBVS) and has been proven th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Imron, Moch Aruman
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page
container_title
container_volume 1913
creator Imron, Moch Aruman
description The coefficients of sine series which is monotone sequence (MS) have been generalized to General Monotone Sequences (GMS), Group Bounded Variation Sequences (GBVS), Mean Value Bounded Variation Sequences (MVBVS) and Supremum Bounded Variation Sequences of the first type (SBVS) and has been proven that MS ⊊ GMS ⊊ GBVS ⊊ MV BVS. Further it has also been shown that MBVS ⊊ S BVS. Furthermore, in this paper it will be discuss the application of the approximation theory of the sine sequence in the class of supremum Bounded Variation Sequences of the first type which is the generalization of the monotone sequences class.
doi_str_mv 10.1063/1.5016639
format Conference Proceeding
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_journals_2116019570</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2116019570</sourcerecordid><originalsourceid>FETCH-LOGICAL-p288t-b7d354bafda06c0d4a3f7511fba50cd5cadaddcf6c8a4c957fcec2911c793b5b3</originalsourceid><addsrcrecordid>eNp9kEtLxDAUhYMoOI4u_AcBd0LHpGnSdjkMvkBwo-AupHkwGaZNTNLR2frLjXbAnasLl--ec-4B4BKjBUaM3OAFRZgx0h6BGaYUFzXD7BjMEGqroqzI2yk4i3GDUNnWdTMDX0vvt1aKZN0AnYHC--A-bT8t0lq7sIfGBRjtoGHUweoIP2xaQ-m0MVZaPSRoguuh3IoYYRx90P3Yw86Ng9IK7kSwk1rU76MeZBbIRsaGmGDae30OTozYRn1xmHPwenf7snoonp7vH1fLp8KXTZOKrlaEVp0wSiAmkaoEMTXF2HSCIqmoFEooJQ2TjahkS2sjtSxbjGXdko52ZA6uJt38YQ4SE9-4MQzZkpcYM4TzDcrU9URFadNvbu5D7iPsOUb8p2OO-aHj_-CdC38g98qQb49tgec</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>2116019570</pqid></control><display><type>conference_proceeding</type><title>Application of approximation theory for sine series with coefficient from class supremum bounded variation sequences of first type</title><source>AIP Journals Complete</source><creator>Imron, Moch Aruman</creator><contributor>Wibowo, Ratno Bagus Edy ; Imron, Moch. Aruman ; Kilicman, Adem ; Marjono</contributor><creatorcontrib>Imron, Moch Aruman ; Wibowo, Ratno Bagus Edy ; Imron, Moch. Aruman ; Kilicman, Adem ; Marjono</creatorcontrib><description>The coefficients of sine series which is monotone sequence (MS) have been generalized to General Monotone Sequences (GMS), Group Bounded Variation Sequences (GBVS), Mean Value Bounded Variation Sequences (MVBVS) and Supremum Bounded Variation Sequences of the first type (SBVS) and has been proven that MS ⊊ GMS ⊊ GBVS ⊊ MV BVS. Further it has also been shown that MBVS ⊊ S BVS. Furthermore, in this paper it will be discuss the application of the approximation theory of the sine sequence in the class of supremum Bounded Variation Sequences of the first type which is the generalization of the monotone sequences class.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/1.5016639</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Approximation ; Coefficient of variation ; Mathematical analysis ; Sequences ; Sine series</subject><ispartof>AIP conference proceedings, 2017, Vol.1913 (1)</ispartof><rights>Author(s)</rights><rights>2017 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/acp/article-lookup/doi/10.1063/1.5016639$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>309,310,314,780,784,789,790,794,4512,23930,23931,25140,27924,27925,76384</link.rule.ids></links><search><contributor>Wibowo, Ratno Bagus Edy</contributor><contributor>Imron, Moch. Aruman</contributor><contributor>Kilicman, Adem</contributor><contributor>Marjono</contributor><creatorcontrib>Imron, Moch Aruman</creatorcontrib><title>Application of approximation theory for sine series with coefficient from class supremum bounded variation sequences of first type</title><title>AIP conference proceedings</title><description>The coefficients of sine series which is monotone sequence (MS) have been generalized to General Monotone Sequences (GMS), Group Bounded Variation Sequences (GBVS), Mean Value Bounded Variation Sequences (MVBVS) and Supremum Bounded Variation Sequences of the first type (SBVS) and has been proven that MS ⊊ GMS ⊊ GBVS ⊊ MV BVS. Further it has also been shown that MBVS ⊊ S BVS. Furthermore, in this paper it will be discuss the application of the approximation theory of the sine sequence in the class of supremum Bounded Variation Sequences of the first type which is the generalization of the monotone sequences class.</description><subject>Approximation</subject><subject>Coefficient of variation</subject><subject>Mathematical analysis</subject><subject>Sequences</subject><subject>Sine series</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2017</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNp9kEtLxDAUhYMoOI4u_AcBd0LHpGnSdjkMvkBwo-AupHkwGaZNTNLR2frLjXbAnasLl--ec-4B4BKjBUaM3OAFRZgx0h6BGaYUFzXD7BjMEGqroqzI2yk4i3GDUNnWdTMDX0vvt1aKZN0AnYHC--A-bT8t0lq7sIfGBRjtoGHUweoIP2xaQ-m0MVZaPSRoguuh3IoYYRx90P3Yw86Ng9IK7kSwk1rU76MeZBbIRsaGmGDae30OTozYRn1xmHPwenf7snoonp7vH1fLp8KXTZOKrlaEVp0wSiAmkaoEMTXF2HSCIqmoFEooJQ2TjahkS2sjtSxbjGXdko52ZA6uJt38YQ4SE9-4MQzZkpcYM4TzDcrU9URFadNvbu5D7iPsOUb8p2OO-aHj_-CdC38g98qQb49tgec</recordid><startdate>20171205</startdate><enddate>20171205</enddate><creator>Imron, Moch Aruman</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20171205</creationdate><title>Application of approximation theory for sine series with coefficient from class supremum bounded variation sequences of first type</title><author>Imron, Moch Aruman</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p288t-b7d354bafda06c0d4a3f7511fba50cd5cadaddcf6c8a4c957fcec2911c793b5b3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Approximation</topic><topic>Coefficient of variation</topic><topic>Mathematical analysis</topic><topic>Sequences</topic><topic>Sine series</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Imron, Moch Aruman</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Imron, Moch Aruman</au><au>Wibowo, Ratno Bagus Edy</au><au>Imron, Moch. Aruman</au><au>Kilicman, Adem</au><au>Marjono</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Application of approximation theory for sine series with coefficient from class supremum bounded variation sequences of first type</atitle><btitle>AIP conference proceedings</btitle><date>2017-12-05</date><risdate>2017</risdate><volume>1913</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>The coefficients of sine series which is monotone sequence (MS) have been generalized to General Monotone Sequences (GMS), Group Bounded Variation Sequences (GBVS), Mean Value Bounded Variation Sequences (MVBVS) and Supremum Bounded Variation Sequences of the first type (SBVS) and has been proven that MS ⊊ GMS ⊊ GBVS ⊊ MV BVS. Further it has also been shown that MBVS ⊊ S BVS. Furthermore, in this paper it will be discuss the application of the approximation theory of the sine sequence in the class of supremum Bounded Variation Sequences of the first type which is the generalization of the monotone sequences class.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.5016639</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0094-243X
ispartof AIP conference proceedings, 2017, Vol.1913 (1)
issn 0094-243X
1551-7616
language eng
recordid cdi_proquest_journals_2116019570
source AIP Journals Complete
subjects Approximation
Coefficient of variation
Mathematical analysis
Sequences
Sine series
title Application of approximation theory for sine series with coefficient from class supremum bounded variation sequences of first type
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T09%3A02%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Application%20of%20approximation%20theory%20for%20sine%20series%20with%20coefficient%20from%20class%20supremum%20bounded%20variation%20sequences%20of%20first%20type&rft.btitle=AIP%20conference%20proceedings&rft.au=Imron,%20Moch%20Aruman&rft.date=2017-12-05&rft.volume=1913&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/1.5016639&rft_dat=%3Cproquest_scita%3E2116019570%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2116019570&rft_id=info:pmid/&rfr_iscdi=true