Application of approximation theory for sine series with coefficient from class supremum bounded variation sequences of first type
The coefficients of sine series which is monotone sequence (MS) have been generalized to General Monotone Sequences (GMS), Group Bounded Variation Sequences (GBVS), Mean Value Bounded Variation Sequences (MVBVS) and Supremum Bounded Variation Sequences of the first type (SBVS) and has been proven th...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | |
container_title | |
container_volume | 1913 |
creator | Imron, Moch Aruman |
description | The coefficients of sine series which is monotone sequence (MS) have been generalized to General Monotone Sequences (GMS), Group Bounded Variation Sequences (GBVS), Mean Value Bounded Variation Sequences (MVBVS) and Supremum Bounded Variation Sequences of the first type (SBVS) and has been proven that MS ⊊ GMS ⊊ GBVS ⊊ MV BVS. Further it has also been shown that MBVS ⊊ S BVS. Furthermore, in this paper it will be discuss the application of the approximation theory of the sine sequence in the class of supremum Bounded Variation Sequences of the first type which is the generalization of the monotone sequences class. |
doi_str_mv | 10.1063/1.5016639 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_journals_2116019570</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2116019570</sourcerecordid><originalsourceid>FETCH-LOGICAL-p288t-b7d354bafda06c0d4a3f7511fba50cd5cadaddcf6c8a4c957fcec2911c793b5b3</originalsourceid><addsrcrecordid>eNp9kEtLxDAUhYMoOI4u_AcBd0LHpGnSdjkMvkBwo-AupHkwGaZNTNLR2frLjXbAnasLl--ec-4B4BKjBUaM3OAFRZgx0h6BGaYUFzXD7BjMEGqroqzI2yk4i3GDUNnWdTMDX0vvt1aKZN0AnYHC--A-bT8t0lq7sIfGBRjtoGHUweoIP2xaQ-m0MVZaPSRoguuh3IoYYRx90P3Yw86Ng9IK7kSwk1rU76MeZBbIRsaGmGDae30OTozYRn1xmHPwenf7snoonp7vH1fLp8KXTZOKrlaEVp0wSiAmkaoEMTXF2HSCIqmoFEooJQ2TjahkS2sjtSxbjGXdko52ZA6uJt38YQ4SE9-4MQzZkpcYM4TzDcrU9URFadNvbu5D7iPsOUb8p2OO-aHj_-CdC38g98qQb49tgec</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>2116019570</pqid></control><display><type>conference_proceeding</type><title>Application of approximation theory for sine series with coefficient from class supremum bounded variation sequences of first type</title><source>AIP Journals Complete</source><creator>Imron, Moch Aruman</creator><contributor>Wibowo, Ratno Bagus Edy ; Imron, Moch. Aruman ; Kilicman, Adem ; Marjono</contributor><creatorcontrib>Imron, Moch Aruman ; Wibowo, Ratno Bagus Edy ; Imron, Moch. Aruman ; Kilicman, Adem ; Marjono</creatorcontrib><description>The coefficients of sine series which is monotone sequence (MS) have been generalized to General Monotone Sequences (GMS), Group Bounded Variation Sequences (GBVS), Mean Value Bounded Variation Sequences (MVBVS) and Supremum Bounded Variation Sequences of the first type (SBVS) and has been proven that MS ⊊ GMS ⊊ GBVS ⊊ MV BVS. Further it has also been shown that MBVS ⊊ S BVS. Furthermore, in this paper it will be discuss the application of the approximation theory of the sine sequence in the class of supremum Bounded Variation Sequences of the first type which is the generalization of the monotone sequences class.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/1.5016639</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Approximation ; Coefficient of variation ; Mathematical analysis ; Sequences ; Sine series</subject><ispartof>AIP conference proceedings, 2017, Vol.1913 (1)</ispartof><rights>Author(s)</rights><rights>2017 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/acp/article-lookup/doi/10.1063/1.5016639$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>309,310,314,780,784,789,790,794,4512,23930,23931,25140,27924,27925,76384</link.rule.ids></links><search><contributor>Wibowo, Ratno Bagus Edy</contributor><contributor>Imron, Moch. Aruman</contributor><contributor>Kilicman, Adem</contributor><contributor>Marjono</contributor><creatorcontrib>Imron, Moch Aruman</creatorcontrib><title>Application of approximation theory for sine series with coefficient from class supremum bounded variation sequences of first type</title><title>AIP conference proceedings</title><description>The coefficients of sine series which is monotone sequence (MS) have been generalized to General Monotone Sequences (GMS), Group Bounded Variation Sequences (GBVS), Mean Value Bounded Variation Sequences (MVBVS) and Supremum Bounded Variation Sequences of the first type (SBVS) and has been proven that MS ⊊ GMS ⊊ GBVS ⊊ MV BVS. Further it has also been shown that MBVS ⊊ S BVS. Furthermore, in this paper it will be discuss the application of the approximation theory of the sine sequence in the class of supremum Bounded Variation Sequences of the first type which is the generalization of the monotone sequences class.</description><subject>Approximation</subject><subject>Coefficient of variation</subject><subject>Mathematical analysis</subject><subject>Sequences</subject><subject>Sine series</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2017</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNp9kEtLxDAUhYMoOI4u_AcBd0LHpGnSdjkMvkBwo-AupHkwGaZNTNLR2frLjXbAnasLl--ec-4B4BKjBUaM3OAFRZgx0h6BGaYUFzXD7BjMEGqroqzI2yk4i3GDUNnWdTMDX0vvt1aKZN0AnYHC--A-bT8t0lq7sIfGBRjtoGHUweoIP2xaQ-m0MVZaPSRoguuh3IoYYRx90P3Yw86Ng9IK7kSwk1rU76MeZBbIRsaGmGDae30OTozYRn1xmHPwenf7snoonp7vH1fLp8KXTZOKrlaEVp0wSiAmkaoEMTXF2HSCIqmoFEooJQ2TjahkS2sjtSxbjGXdko52ZA6uJt38YQ4SE9-4MQzZkpcYM4TzDcrU9URFadNvbu5D7iPsOUb8p2OO-aHj_-CdC38g98qQb49tgec</recordid><startdate>20171205</startdate><enddate>20171205</enddate><creator>Imron, Moch Aruman</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20171205</creationdate><title>Application of approximation theory for sine series with coefficient from class supremum bounded variation sequences of first type</title><author>Imron, Moch Aruman</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p288t-b7d354bafda06c0d4a3f7511fba50cd5cadaddcf6c8a4c957fcec2911c793b5b3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Approximation</topic><topic>Coefficient of variation</topic><topic>Mathematical analysis</topic><topic>Sequences</topic><topic>Sine series</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Imron, Moch Aruman</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Imron, Moch Aruman</au><au>Wibowo, Ratno Bagus Edy</au><au>Imron, Moch. Aruman</au><au>Kilicman, Adem</au><au>Marjono</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Application of approximation theory for sine series with coefficient from class supremum bounded variation sequences of first type</atitle><btitle>AIP conference proceedings</btitle><date>2017-12-05</date><risdate>2017</risdate><volume>1913</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>The coefficients of sine series which is monotone sequence (MS) have been generalized to General Monotone Sequences (GMS), Group Bounded Variation Sequences (GBVS), Mean Value Bounded Variation Sequences (MVBVS) and Supremum Bounded Variation Sequences of the first type (SBVS) and has been proven that MS ⊊ GMS ⊊ GBVS ⊊ MV BVS. Further it has also been shown that MBVS ⊊ S BVS. Furthermore, in this paper it will be discuss the application of the approximation theory of the sine sequence in the class of supremum Bounded Variation Sequences of the first type which is the generalization of the monotone sequences class.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.5016639</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0094-243X |
ispartof | AIP conference proceedings, 2017, Vol.1913 (1) |
issn | 0094-243X 1551-7616 |
language | eng |
recordid | cdi_proquest_journals_2116019570 |
source | AIP Journals Complete |
subjects | Approximation Coefficient of variation Mathematical analysis Sequences Sine series |
title | Application of approximation theory for sine series with coefficient from class supremum bounded variation sequences of first type |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T09%3A02%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Application%20of%20approximation%20theory%20for%20sine%20series%20with%20coefficient%20from%20class%20supremum%20bounded%20variation%20sequences%20of%20first%20type&rft.btitle=AIP%20conference%20proceedings&rft.au=Imron,%20Moch%20Aruman&rft.date=2017-12-05&rft.volume=1913&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/1.5016639&rft_dat=%3Cproquest_scita%3E2116019570%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2116019570&rft_id=info:pmid/&rfr_iscdi=true |