The first two largest eigenvalues of Laplacian, spectral gap problem and Cheeger constant of graphs
We show how the first two largest eigenvalues of Laplacian of a graph or smooth surface can be used to estimate the Cheeger constant of the graph. Particularly, we consider the problem of separating the graph into two large components of approximately equal volumes by making a small cut. This is the...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | |
container_title | |
container_volume | 1913 |
creator | Samuel, Opiyo Soeharyadi, Yudi Setyabudhi, Marcus Wono |
description | We show how the first two largest eigenvalues of Laplacian of a graph or smooth surface can be used to estimate the Cheeger constant of the graph. Particularly, we consider the problem of separating the graph into two large components of approximately equal volumes by making a small cut. This is the idea of Cheeger constant of a graph, which we want to relate to the spectral gap (the difference between the moduli of the first two largest eigenvalues of a Laplacian). We shall use Rayleigh variational characterization of the eigenvalues of the Laplacian to obtain the first two largest eigenvalues. The study reveals that spectral gap of a graph Γ correlates with the Cheeger constant h
Γ of the graph. All our results are illustrated by some simple examples to give a clear insight of the concepts. |
doi_str_mv | 10.1063/1.5016648 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_journals_2116018973</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2116018973</sourcerecordid><originalsourceid>FETCH-LOGICAL-c328t-20702dc2a3b506fab2995f72930d19d746bb0885b8d297d895dba17221352e43</originalsourceid><addsrcrecordid>eNp9kMtKw0AUhgdRsFYXvsGAOzF1LpnbUoI3KLjpwt1wkpmkKWkSZ6YV396UFty5Omfx_ed8_AjdUrKgRPJHuhCESpnrMzSjQtBMSSrP0YwQk2cs55-X6CrGDSHMKKVnqFqtPa7bEBNO3wPuIDR-2n3b-H4P3c5HPNR4CWMHVQv9A46jr1KADjcw4jEMZee3GHqHi7X3jQ-4GvqYoE-HXBNgXMdrdFFDF_3Nac7R6uV5Vbxly4_X9-JpmVWc6ZQxoghzFQNeCiJrKJkxolbMcOKocSqXZUm0FqV2k7zTRrgSqGKMcsF8zufo7nh2svqaxJPdDLvQTx8to1QSqo3iE3V_pGLVJkjt0NsxtFsIP3Y_BEvtqT87uvo_mBJ7KPwvwH8Bru1xow</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>2116018973</pqid></control><display><type>conference_proceeding</type><title>The first two largest eigenvalues of Laplacian, spectral gap problem and Cheeger constant of graphs</title><source>AIP Journals Complete</source><creator>Samuel, Opiyo ; Soeharyadi, Yudi ; Setyabudhi, Marcus Wono</creator><contributor>Wibowo, Ratno Bagus Edy ; Imron, Moch. Aruman ; Kilicman, Adem ; Marjono</contributor><creatorcontrib>Samuel, Opiyo ; Soeharyadi, Yudi ; Setyabudhi, Marcus Wono ; Wibowo, Ratno Bagus Edy ; Imron, Moch. Aruman ; Kilicman, Adem ; Marjono</creatorcontrib><description>We show how the first two largest eigenvalues of Laplacian of a graph or smooth surface can be used to estimate the Cheeger constant of the graph. Particularly, we consider the problem of separating the graph into two large components of approximately equal volumes by making a small cut. This is the idea of Cheeger constant of a graph, which we want to relate to the spectral gap (the difference between the moduli of the first two largest eigenvalues of a Laplacian). We shall use Rayleigh variational characterization of the eigenvalues of the Laplacian to obtain the first two largest eigenvalues. The study reveals that spectral gap of a graph Γ correlates with the Cheeger constant h
Γ of the graph. All our results are illustrated by some simple examples to give a clear insight of the concepts.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/1.5016648</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Eigenvalues ; Spectra</subject><ispartof>AIP Conference Proceedings, 2017, Vol.1913 (1)</ispartof><rights>Author(s)</rights><rights>2017 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c328t-20702dc2a3b506fab2995f72930d19d746bb0885b8d297d895dba17221352e43</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/acp/article-lookup/doi/10.1063/1.5016648$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>309,310,314,780,784,789,790,794,4512,23930,23931,25140,27924,27925,76384</link.rule.ids></links><search><contributor>Wibowo, Ratno Bagus Edy</contributor><contributor>Imron, Moch. Aruman</contributor><contributor>Kilicman, Adem</contributor><contributor>Marjono</contributor><creatorcontrib>Samuel, Opiyo</creatorcontrib><creatorcontrib>Soeharyadi, Yudi</creatorcontrib><creatorcontrib>Setyabudhi, Marcus Wono</creatorcontrib><title>The first two largest eigenvalues of Laplacian, spectral gap problem and Cheeger constant of graphs</title><title>AIP Conference Proceedings</title><description>We show how the first two largest eigenvalues of Laplacian of a graph or smooth surface can be used to estimate the Cheeger constant of the graph. Particularly, we consider the problem of separating the graph into two large components of approximately equal volumes by making a small cut. This is the idea of Cheeger constant of a graph, which we want to relate to the spectral gap (the difference between the moduli of the first two largest eigenvalues of a Laplacian). We shall use Rayleigh variational characterization of the eigenvalues of the Laplacian to obtain the first two largest eigenvalues. The study reveals that spectral gap of a graph Γ correlates with the Cheeger constant h
Γ of the graph. All our results are illustrated by some simple examples to give a clear insight of the concepts.</description><subject>Eigenvalues</subject><subject>Spectra</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2017</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNp9kMtKw0AUhgdRsFYXvsGAOzF1LpnbUoI3KLjpwt1wkpmkKWkSZ6YV396UFty5Omfx_ed8_AjdUrKgRPJHuhCESpnrMzSjQtBMSSrP0YwQk2cs55-X6CrGDSHMKKVnqFqtPa7bEBNO3wPuIDR-2n3b-H4P3c5HPNR4CWMHVQv9A46jr1KADjcw4jEMZee3GHqHi7X3jQ-4GvqYoE-HXBNgXMdrdFFDF_3Nac7R6uV5Vbxly4_X9-JpmVWc6ZQxoghzFQNeCiJrKJkxolbMcOKocSqXZUm0FqV2k7zTRrgSqGKMcsF8zufo7nh2svqaxJPdDLvQTx8to1QSqo3iE3V_pGLVJkjt0NsxtFsIP3Y_BEvtqT87uvo_mBJ7KPwvwH8Bru1xow</recordid><startdate>20171205</startdate><enddate>20171205</enddate><creator>Samuel, Opiyo</creator><creator>Soeharyadi, Yudi</creator><creator>Setyabudhi, Marcus Wono</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20171205</creationdate><title>The first two largest eigenvalues of Laplacian, spectral gap problem and Cheeger constant of graphs</title><author>Samuel, Opiyo ; Soeharyadi, Yudi ; Setyabudhi, Marcus Wono</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c328t-20702dc2a3b506fab2995f72930d19d746bb0885b8d297d895dba17221352e43</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Eigenvalues</topic><topic>Spectra</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Samuel, Opiyo</creatorcontrib><creatorcontrib>Soeharyadi, Yudi</creatorcontrib><creatorcontrib>Setyabudhi, Marcus Wono</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Samuel, Opiyo</au><au>Soeharyadi, Yudi</au><au>Setyabudhi, Marcus Wono</au><au>Wibowo, Ratno Bagus Edy</au><au>Imron, Moch. Aruman</au><au>Kilicman, Adem</au><au>Marjono</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>The first two largest eigenvalues of Laplacian, spectral gap problem and Cheeger constant of graphs</atitle><btitle>AIP Conference Proceedings</btitle><date>2017-12-05</date><risdate>2017</risdate><volume>1913</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>We show how the first two largest eigenvalues of Laplacian of a graph or smooth surface can be used to estimate the Cheeger constant of the graph. Particularly, we consider the problem of separating the graph into two large components of approximately equal volumes by making a small cut. This is the idea of Cheeger constant of a graph, which we want to relate to the spectral gap (the difference between the moduli of the first two largest eigenvalues of a Laplacian). We shall use Rayleigh variational characterization of the eigenvalues of the Laplacian to obtain the first two largest eigenvalues. The study reveals that spectral gap of a graph Γ correlates with the Cheeger constant h
Γ of the graph. All our results are illustrated by some simple examples to give a clear insight of the concepts.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.5016648</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0094-243X |
ispartof | AIP Conference Proceedings, 2017, Vol.1913 (1) |
issn | 0094-243X 1551-7616 |
language | eng |
recordid | cdi_proquest_journals_2116018973 |
source | AIP Journals Complete |
subjects | Eigenvalues Spectra |
title | The first two largest eigenvalues of Laplacian, spectral gap problem and Cheeger constant of graphs |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T07%3A59%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=The%20first%20two%20largest%20eigenvalues%20of%20Laplacian,%20spectral%20gap%20problem%20and%20Cheeger%20constant%20of%20graphs&rft.btitle=AIP%20Conference%20Proceedings&rft.au=Samuel,%20Opiyo&rft.date=2017-12-05&rft.volume=1913&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/1.5016648&rft_dat=%3Cproquest_scita%3E2116018973%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2116018973&rft_id=info:pmid/&rfr_iscdi=true |