The first two largest eigenvalues of Laplacian, spectral gap problem and Cheeger constant of graphs

We show how the first two largest eigenvalues of Laplacian of a graph or smooth surface can be used to estimate the Cheeger constant of the graph. Particularly, we consider the problem of separating the graph into two large components of approximately equal volumes by making a small cut. This is the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Samuel, Opiyo, Soeharyadi, Yudi, Setyabudhi, Marcus Wono
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page
container_title
container_volume 1913
creator Samuel, Opiyo
Soeharyadi, Yudi
Setyabudhi, Marcus Wono
description We show how the first two largest eigenvalues of Laplacian of a graph or smooth surface can be used to estimate the Cheeger constant of the graph. Particularly, we consider the problem of separating the graph into two large components of approximately equal volumes by making a small cut. This is the idea of Cheeger constant of a graph, which we want to relate to the spectral gap (the difference between the moduli of the first two largest eigenvalues of a Laplacian). We shall use Rayleigh variational characterization of the eigenvalues of the Laplacian to obtain the first two largest eigenvalues. The study reveals that spectral gap of a graph Γ correlates with the Cheeger constant h Γ of the graph. All our results are illustrated by some simple examples to give a clear insight of the concepts.
doi_str_mv 10.1063/1.5016648
format Conference Proceeding
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_journals_2116018973</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2116018973</sourcerecordid><originalsourceid>FETCH-LOGICAL-c328t-20702dc2a3b506fab2995f72930d19d746bb0885b8d297d895dba17221352e43</originalsourceid><addsrcrecordid>eNp9kMtKw0AUhgdRsFYXvsGAOzF1LpnbUoI3KLjpwt1wkpmkKWkSZ6YV396UFty5Omfx_ed8_AjdUrKgRPJHuhCESpnrMzSjQtBMSSrP0YwQk2cs55-X6CrGDSHMKKVnqFqtPa7bEBNO3wPuIDR-2n3b-H4P3c5HPNR4CWMHVQv9A46jr1KADjcw4jEMZee3GHqHi7X3jQ-4GvqYoE-HXBNgXMdrdFFDF_3Nac7R6uV5Vbxly4_X9-JpmVWc6ZQxoghzFQNeCiJrKJkxolbMcOKocSqXZUm0FqV2k7zTRrgSqGKMcsF8zufo7nh2svqaxJPdDLvQTx8to1QSqo3iE3V_pGLVJkjt0NsxtFsIP3Y_BEvtqT87uvo_mBJ7KPwvwH8Bru1xow</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>2116018973</pqid></control><display><type>conference_proceeding</type><title>The first two largest eigenvalues of Laplacian, spectral gap problem and Cheeger constant of graphs</title><source>AIP Journals Complete</source><creator>Samuel, Opiyo ; Soeharyadi, Yudi ; Setyabudhi, Marcus Wono</creator><contributor>Wibowo, Ratno Bagus Edy ; Imron, Moch. Aruman ; Kilicman, Adem ; Marjono</contributor><creatorcontrib>Samuel, Opiyo ; Soeharyadi, Yudi ; Setyabudhi, Marcus Wono ; Wibowo, Ratno Bagus Edy ; Imron, Moch. Aruman ; Kilicman, Adem ; Marjono</creatorcontrib><description>We show how the first two largest eigenvalues of Laplacian of a graph or smooth surface can be used to estimate the Cheeger constant of the graph. Particularly, we consider the problem of separating the graph into two large components of approximately equal volumes by making a small cut. This is the idea of Cheeger constant of a graph, which we want to relate to the spectral gap (the difference between the moduli of the first two largest eigenvalues of a Laplacian). We shall use Rayleigh variational characterization of the eigenvalues of the Laplacian to obtain the first two largest eigenvalues. The study reveals that spectral gap of a graph Γ correlates with the Cheeger constant h Γ of the graph. All our results are illustrated by some simple examples to give a clear insight of the concepts.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/1.5016648</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Eigenvalues ; Spectra</subject><ispartof>AIP Conference Proceedings, 2017, Vol.1913 (1)</ispartof><rights>Author(s)</rights><rights>2017 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c328t-20702dc2a3b506fab2995f72930d19d746bb0885b8d297d895dba17221352e43</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/acp/article-lookup/doi/10.1063/1.5016648$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>309,310,314,780,784,789,790,794,4512,23930,23931,25140,27924,27925,76384</link.rule.ids></links><search><contributor>Wibowo, Ratno Bagus Edy</contributor><contributor>Imron, Moch. Aruman</contributor><contributor>Kilicman, Adem</contributor><contributor>Marjono</contributor><creatorcontrib>Samuel, Opiyo</creatorcontrib><creatorcontrib>Soeharyadi, Yudi</creatorcontrib><creatorcontrib>Setyabudhi, Marcus Wono</creatorcontrib><title>The first two largest eigenvalues of Laplacian, spectral gap problem and Cheeger constant of graphs</title><title>AIP Conference Proceedings</title><description>We show how the first two largest eigenvalues of Laplacian of a graph or smooth surface can be used to estimate the Cheeger constant of the graph. Particularly, we consider the problem of separating the graph into two large components of approximately equal volumes by making a small cut. This is the idea of Cheeger constant of a graph, which we want to relate to the spectral gap (the difference between the moduli of the first two largest eigenvalues of a Laplacian). We shall use Rayleigh variational characterization of the eigenvalues of the Laplacian to obtain the first two largest eigenvalues. The study reveals that spectral gap of a graph Γ correlates with the Cheeger constant h Γ of the graph. All our results are illustrated by some simple examples to give a clear insight of the concepts.</description><subject>Eigenvalues</subject><subject>Spectra</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2017</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNp9kMtKw0AUhgdRsFYXvsGAOzF1LpnbUoI3KLjpwt1wkpmkKWkSZ6YV396UFty5Omfx_ed8_AjdUrKgRPJHuhCESpnrMzSjQtBMSSrP0YwQk2cs55-X6CrGDSHMKKVnqFqtPa7bEBNO3wPuIDR-2n3b-H4P3c5HPNR4CWMHVQv9A46jr1KADjcw4jEMZee3GHqHi7X3jQ-4GvqYoE-HXBNgXMdrdFFDF_3Nac7R6uV5Vbxly4_X9-JpmVWc6ZQxoghzFQNeCiJrKJkxolbMcOKocSqXZUm0FqV2k7zTRrgSqGKMcsF8zufo7nh2svqaxJPdDLvQTx8to1QSqo3iE3V_pGLVJkjt0NsxtFsIP3Y_BEvtqT87uvo_mBJ7KPwvwH8Bru1xow</recordid><startdate>20171205</startdate><enddate>20171205</enddate><creator>Samuel, Opiyo</creator><creator>Soeharyadi, Yudi</creator><creator>Setyabudhi, Marcus Wono</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20171205</creationdate><title>The first two largest eigenvalues of Laplacian, spectral gap problem and Cheeger constant of graphs</title><author>Samuel, Opiyo ; Soeharyadi, Yudi ; Setyabudhi, Marcus Wono</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c328t-20702dc2a3b506fab2995f72930d19d746bb0885b8d297d895dba17221352e43</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Eigenvalues</topic><topic>Spectra</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Samuel, Opiyo</creatorcontrib><creatorcontrib>Soeharyadi, Yudi</creatorcontrib><creatorcontrib>Setyabudhi, Marcus Wono</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Samuel, Opiyo</au><au>Soeharyadi, Yudi</au><au>Setyabudhi, Marcus Wono</au><au>Wibowo, Ratno Bagus Edy</au><au>Imron, Moch. Aruman</au><au>Kilicman, Adem</au><au>Marjono</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>The first two largest eigenvalues of Laplacian, spectral gap problem and Cheeger constant of graphs</atitle><btitle>AIP Conference Proceedings</btitle><date>2017-12-05</date><risdate>2017</risdate><volume>1913</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>We show how the first two largest eigenvalues of Laplacian of a graph or smooth surface can be used to estimate the Cheeger constant of the graph. Particularly, we consider the problem of separating the graph into two large components of approximately equal volumes by making a small cut. This is the idea of Cheeger constant of a graph, which we want to relate to the spectral gap (the difference between the moduli of the first two largest eigenvalues of a Laplacian). We shall use Rayleigh variational characterization of the eigenvalues of the Laplacian to obtain the first two largest eigenvalues. The study reveals that spectral gap of a graph Γ correlates with the Cheeger constant h Γ of the graph. All our results are illustrated by some simple examples to give a clear insight of the concepts.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.5016648</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0094-243X
ispartof AIP Conference Proceedings, 2017, Vol.1913 (1)
issn 0094-243X
1551-7616
language eng
recordid cdi_proquest_journals_2116018973
source AIP Journals Complete
subjects Eigenvalues
Spectra
title The first two largest eigenvalues of Laplacian, spectral gap problem and Cheeger constant of graphs
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T07%3A59%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=The%20first%20two%20largest%20eigenvalues%20of%20Laplacian,%20spectral%20gap%20problem%20and%20Cheeger%20constant%20of%20graphs&rft.btitle=AIP%20Conference%20Proceedings&rft.au=Samuel,%20Opiyo&rft.date=2017-12-05&rft.volume=1913&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/1.5016648&rft_dat=%3Cproquest_scita%3E2116018973%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2116018973&rft_id=info:pmid/&rfr_iscdi=true