“FORCE” learning in recurrent neural networks as data assimilation

It is shown that the “FORCE” algorithm for learning in arbitrarily connected networks of simple neuronal units can be cast as a Kalman Filter, with a particular state-dependent form for the background error covariances. The resulting interpretation has implications for initialization of the learning...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chaos (Woodbury, N.Y.) N.Y.), 2017-12, Vol.27 (12), p.126804-126804
1. Verfasser: Duane, Gregory S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 126804
container_issue 12
container_start_page 126804
container_title Chaos (Woodbury, N.Y.)
container_volume 27
creator Duane, Gregory S.
description It is shown that the “FORCE” algorithm for learning in arbitrarily connected networks of simple neuronal units can be cast as a Kalman Filter, with a particular state-dependent form for the background error covariances. The resulting interpretation has implications for initialization of the learning algorithm, leads to an extension to include interactions between the weight updates for different neurons, and can represent relationships within groups of multiple target output signals.
doi_str_mv 10.1063/1.4990730
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_journals_2116018256</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2116018256</sourcerecordid><originalsourceid>FETCH-LOGICAL-c383t-ff58d6b843ca2a63f7a643f993b7899c13f88101129d9b53c5008f7c1b96985f3</originalsourceid><addsrcrecordid>eNp90NFKwzAUBuAgipvTC19ACt6oUM1Jmja5lLGpMBiIXoc0TaSza2fSKt7tQfTl9iR2dioIevWfi4-fw4_QIeBzwDG9gPNICJxQvIX6gLkIk5iT7fXNohAYxj205_0MYwyEsl3UI4JwgSnro_Fq-Tae3g5Hq-V7UBjlyrx8CPIycEY3zpmyDkrTOFW0Ub9U7tEHygeZqlWbPp_nharzqtxHO1YV3hxscoDux6O74XU4mV7dDC8noaac1qG1jGdxyiOqFVExtYmKI2qFoGnChdBALeeAAYjIRMqobn_nNtGQilhwZukAnXS9C1c9NcbXcp57bYpClaZqvATBKWEJYXFLj3_RWdW4sv1OEoAYA-_Uaae0q7x3xsqFy-fKvUrAcj2uBLkZt7VHm8YmnZvsW36t2YKzDnid15-7_Nv2J36u3A-Ui8zSD4i4j4I</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2116018256</pqid></control><display><type>article</type><title>“FORCE” learning in recurrent neural networks as data assimilation</title><source>American Institute of Physics (AIP) Journals</source><source>Alma/SFX Local Collection</source><creator>Duane, Gregory S.</creator><creatorcontrib>Duane, Gregory S.</creatorcontrib><description>It is shown that the “FORCE” algorithm for learning in arbitrarily connected networks of simple neuronal units can be cast as a Kalman Filter, with a particular state-dependent form for the background error covariances. The resulting interpretation has implications for initialization of the learning algorithm, leads to an extension to include interactions between the weight updates for different neurons, and can represent relationships within groups of multiple target output signals.</description><identifier>ISSN: 1054-1500</identifier><identifier>EISSN: 1089-7682</identifier><identifier>DOI: 10.1063/1.4990730</identifier><identifier>PMID: 29289035</identifier><identifier>CODEN: CHAOEH</identifier><language>eng</language><publisher>United States: American Institute of Physics</publisher><subject>Algorithms ; Kalman filters ; Machine learning ; Recurrent neural networks ; Weight</subject><ispartof>Chaos (Woodbury, N.Y.), 2017-12, Vol.27 (12), p.126804-126804</ispartof><rights>Author(s)</rights><rights>2017 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c383t-ff58d6b843ca2a63f7a643f993b7899c13f88101129d9b53c5008f7c1b96985f3</citedby><cites>FETCH-LOGICAL-c383t-ff58d6b843ca2a63f7a643f993b7899c13f88101129d9b53c5008f7c1b96985f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,794,4510,27923,27924</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29289035$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Duane, Gregory S.</creatorcontrib><title>“FORCE” learning in recurrent neural networks as data assimilation</title><title>Chaos (Woodbury, N.Y.)</title><addtitle>Chaos</addtitle><description>It is shown that the “FORCE” algorithm for learning in arbitrarily connected networks of simple neuronal units can be cast as a Kalman Filter, with a particular state-dependent form for the background error covariances. The resulting interpretation has implications for initialization of the learning algorithm, leads to an extension to include interactions between the weight updates for different neurons, and can represent relationships within groups of multiple target output signals.</description><subject>Algorithms</subject><subject>Kalman filters</subject><subject>Machine learning</subject><subject>Recurrent neural networks</subject><subject>Weight</subject><issn>1054-1500</issn><issn>1089-7682</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp90NFKwzAUBuAgipvTC19ACt6oUM1Jmja5lLGpMBiIXoc0TaSza2fSKt7tQfTl9iR2dioIevWfi4-fw4_QIeBzwDG9gPNICJxQvIX6gLkIk5iT7fXNohAYxj205_0MYwyEsl3UI4JwgSnro_Fq-Tae3g5Hq-V7UBjlyrx8CPIycEY3zpmyDkrTOFW0Ub9U7tEHygeZqlWbPp_nharzqtxHO1YV3hxscoDux6O74XU4mV7dDC8noaac1qG1jGdxyiOqFVExtYmKI2qFoGnChdBALeeAAYjIRMqobn_nNtGQilhwZukAnXS9C1c9NcbXcp57bYpClaZqvATBKWEJYXFLj3_RWdW4sv1OEoAYA-_Uaae0q7x3xsqFy-fKvUrAcj2uBLkZt7VHm8YmnZvsW36t2YKzDnid15-7_Nv2J36u3A-Ui8zSD4i4j4I</recordid><startdate>201712</startdate><enddate>201712</enddate><creator>Duane, Gregory S.</creator><general>American Institute of Physics</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope></search><sort><creationdate>201712</creationdate><title>“FORCE” learning in recurrent neural networks as data assimilation</title><author>Duane, Gregory S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c383t-ff58d6b843ca2a63f7a643f993b7899c13f88101129d9b53c5008f7c1b96985f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Algorithms</topic><topic>Kalman filters</topic><topic>Machine learning</topic><topic>Recurrent neural networks</topic><topic>Weight</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Duane, Gregory S.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Chaos (Woodbury, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Duane, Gregory S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>“FORCE” learning in recurrent neural networks as data assimilation</atitle><jtitle>Chaos (Woodbury, N.Y.)</jtitle><addtitle>Chaos</addtitle><date>2017-12</date><risdate>2017</risdate><volume>27</volume><issue>12</issue><spage>126804</spage><epage>126804</epage><pages>126804-126804</pages><issn>1054-1500</issn><eissn>1089-7682</eissn><coden>CHAOEH</coden><abstract>It is shown that the “FORCE” algorithm for learning in arbitrarily connected networks of simple neuronal units can be cast as a Kalman Filter, with a particular state-dependent form for the background error covariances. The resulting interpretation has implications for initialization of the learning algorithm, leads to an extension to include interactions between the weight updates for different neurons, and can represent relationships within groups of multiple target output signals.</abstract><cop>United States</cop><pub>American Institute of Physics</pub><pmid>29289035</pmid><doi>10.1063/1.4990730</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1054-1500
ispartof Chaos (Woodbury, N.Y.), 2017-12, Vol.27 (12), p.126804-126804
issn 1054-1500
1089-7682
language eng
recordid cdi_proquest_journals_2116018256
source American Institute of Physics (AIP) Journals; Alma/SFX Local Collection
subjects Algorithms
Kalman filters
Machine learning
Recurrent neural networks
Weight
title “FORCE” learning in recurrent neural networks as data assimilation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T14%3A29%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=%E2%80%9CFORCE%E2%80%9D%20learning%20in%20recurrent%20neural%20networks%20as%20data%20assimilation&rft.jtitle=Chaos%20(Woodbury,%20N.Y.)&rft.au=Duane,%20Gregory%20S.&rft.date=2017-12&rft.volume=27&rft.issue=12&rft.spage=126804&rft.epage=126804&rft.pages=126804-126804&rft.issn=1054-1500&rft.eissn=1089-7682&rft.coden=CHAOEH&rft_id=info:doi/10.1063/1.4990730&rft_dat=%3Cproquest_pubme%3E2116018256%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2116018256&rft_id=info:pmid/29289035&rfr_iscdi=true