PV and Demand Models for a Markov Decision Process Formulation of the Home Energy Management Problem

This paper proposes a hierarchical approach for estimating residential PV and electrical demand models using historical data. In brief, the method involves first clustering historical data into different day types, and then estimating PV and demand models using kernel regression. Clustering is done...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on industrial electronics (1982) 2019-02, Vol.66 (2), p.1424-1433
Hauptverfasser: Keerthisinghe, Chanaka, Chapman, Archie C., Verbic, Gregor
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1433
container_issue 2
container_start_page 1424
container_title IEEE transactions on industrial electronics (1982)
container_volume 66
creator Keerthisinghe, Chanaka
Chapman, Archie C.
Verbic, Gregor
description This paper proposes a hierarchical approach for estimating residential PV and electrical demand models using historical data. In brief, the method involves first clustering historical data into different day types, and then estimating PV and demand models using kernel regression. Clustering is done to capture intraday variations in the PV and demand profiles, with the aim of capturing much of these intertemporal correlations in the day-type labels. This allows the draws from the kernel estimates within a day type to be done independently. This approach conforms with a Markov decision process construction of the smart home energy management system (SHEMS) problem, which is the ultimate target of the modeling procedure. Moreover, in practical applications, the SHEMS will need the type of a coming day in order to select a daily demand model, which can be done seamlessly using state identification methods. In comparison, forecasting a day's demand profile using time series forecasting methods produces a prediction method that does not provide a probability structure that is directly incorporated into a Markov decision process scheduling model.
doi_str_mv 10.1109/TIE.2018.2850023
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2115834624</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8402236</ieee_id><sourcerecordid>2115834624</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-93e87b761b960e42ffc6b68c88dc51f242ed1812ce32734a9303e63da864c7a83</originalsourceid><addsrcrecordid>eNo9kE1Lw0AQhhdRsFbvgpcFz6n7nc1RamsLLfZQvS6bzaSmJtm6mwr99yZUPL0w8z4z8CB0T8mEUpI9bZezCSNUT5iWhDB-gUZUyjTJMqEv0YiwVCeECHWNbmLcE0KFpHKEis0Htm2BX6AZYu0LqCMufcAWr2348j_9ylWx8i3eBO8gRjz3oTnWthtmvsTdJ-CFbwDPWgi7U4-1dgcNtN1A5DU0t-iqtHWEu78co_f5bDtdJKu31-X0eZU4ltEuyTjoNE8VzTNFQLCydCpX2mldOElLJhgUVFPmgLOUC5txwkHxwmolXGo1H6PH891D8N9HiJ3Z-2No-5eGUSo1F4qJvkXOLRd8jAFKcwhVY8PJUGIGl6Z3aQaX5s9ljzyckQoA_utaEMa44r-kUm6U</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2115834624</pqid></control><display><type>article</type><title>PV and Demand Models for a Markov Decision Process Formulation of the Home Energy Management Problem</title><source>IEEE Electronic Library (IEL)</source><creator>Keerthisinghe, Chanaka ; Chapman, Archie C. ; Verbic, Gregor</creator><creatorcontrib>Keerthisinghe, Chanaka ; Chapman, Archie C. ; Verbic, Gregor</creatorcontrib><description>This paper proposes a hierarchical approach for estimating residential PV and electrical demand models using historical data. In brief, the method involves first clustering historical data into different day types, and then estimating PV and demand models using kernel regression. Clustering is done to capture intraday variations in the PV and demand profiles, with the aim of capturing much of these intertemporal correlations in the day-type labels. This allows the draws from the kernel estimates within a day type to be done independently. This approach conforms with a Markov decision process construction of the smart home energy management system (SHEMS) problem, which is the ultimate target of the modeling procedure. Moreover, in practical applications, the SHEMS will need the type of a coming day in order to select a daily demand model, which can be done seamlessly using state identification methods. In comparison, forecasting a day's demand profile using time series forecasting methods produces a prediction method that does not provide a probability structure that is directly incorporated into a Markov decision process scheduling model.</description><identifier>ISSN: 0278-0046</identifier><identifier>EISSN: 1557-9948</identifier><identifier>DOI: 10.1109/TIE.2018.2850023</identifier><identifier>CODEN: ITIED6</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Australia ; Batteries ; Clustering ; Demand ; demand model ; dynamic programming (DP) ; Economic forecasting ; Energy management ; Estimation ; Identification methods ; kernel regression ; Markov analysis ; Markov chains ; Markov decision process (MDP) ; Markov processes ; Optimization ; Predictive models ; Residential energy ; residential PV model ; smart home energy management ; Statistical analysis</subject><ispartof>IEEE transactions on industrial electronics (1982), 2019-02, Vol.66 (2), p.1424-1433</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-93e87b761b960e42ffc6b68c88dc51f242ed1812ce32734a9303e63da864c7a83</citedby><cites>FETCH-LOGICAL-c291t-93e87b761b960e42ffc6b68c88dc51f242ed1812ce32734a9303e63da864c7a83</cites><orcidid>0000-0003-4949-768X ; 0000-0003-2803-5224 ; 0000-0002-5055-3004</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8402236$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27923,27924,54757</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8402236$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Keerthisinghe, Chanaka</creatorcontrib><creatorcontrib>Chapman, Archie C.</creatorcontrib><creatorcontrib>Verbic, Gregor</creatorcontrib><title>PV and Demand Models for a Markov Decision Process Formulation of the Home Energy Management Problem</title><title>IEEE transactions on industrial electronics (1982)</title><addtitle>TIE</addtitle><description>This paper proposes a hierarchical approach for estimating residential PV and electrical demand models using historical data. In brief, the method involves first clustering historical data into different day types, and then estimating PV and demand models using kernel regression. Clustering is done to capture intraday variations in the PV and demand profiles, with the aim of capturing much of these intertemporal correlations in the day-type labels. This allows the draws from the kernel estimates within a day type to be done independently. This approach conforms with a Markov decision process construction of the smart home energy management system (SHEMS) problem, which is the ultimate target of the modeling procedure. Moreover, in practical applications, the SHEMS will need the type of a coming day in order to select a daily demand model, which can be done seamlessly using state identification methods. In comparison, forecasting a day's demand profile using time series forecasting methods produces a prediction method that does not provide a probability structure that is directly incorporated into a Markov decision process scheduling model.</description><subject>Australia</subject><subject>Batteries</subject><subject>Clustering</subject><subject>Demand</subject><subject>demand model</subject><subject>dynamic programming (DP)</subject><subject>Economic forecasting</subject><subject>Energy management</subject><subject>Estimation</subject><subject>Identification methods</subject><subject>kernel regression</subject><subject>Markov analysis</subject><subject>Markov chains</subject><subject>Markov decision process (MDP)</subject><subject>Markov processes</subject><subject>Optimization</subject><subject>Predictive models</subject><subject>Residential energy</subject><subject>residential PV model</subject><subject>smart home energy management</subject><subject>Statistical analysis</subject><issn>0278-0046</issn><issn>1557-9948</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1Lw0AQhhdRsFbvgpcFz6n7nc1RamsLLfZQvS6bzaSmJtm6mwr99yZUPL0w8z4z8CB0T8mEUpI9bZezCSNUT5iWhDB-gUZUyjTJMqEv0YiwVCeECHWNbmLcE0KFpHKEis0Htm2BX6AZYu0LqCMufcAWr2348j_9ylWx8i3eBO8gRjz3oTnWthtmvsTdJ-CFbwDPWgi7U4-1dgcNtN1A5DU0t-iqtHWEu78co_f5bDtdJKu31-X0eZU4ltEuyTjoNE8VzTNFQLCydCpX2mldOElLJhgUVFPmgLOUC5txwkHxwmolXGo1H6PH891D8N9HiJ3Z-2No-5eGUSo1F4qJvkXOLRd8jAFKcwhVY8PJUGIGl6Z3aQaX5s9ljzyckQoA_utaEMa44r-kUm6U</recordid><startdate>20190201</startdate><enddate>20190201</enddate><creator>Keerthisinghe, Chanaka</creator><creator>Chapman, Archie C.</creator><creator>Verbic, Gregor</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-4949-768X</orcidid><orcidid>https://orcid.org/0000-0003-2803-5224</orcidid><orcidid>https://orcid.org/0000-0002-5055-3004</orcidid></search><sort><creationdate>20190201</creationdate><title>PV and Demand Models for a Markov Decision Process Formulation of the Home Energy Management Problem</title><author>Keerthisinghe, Chanaka ; Chapman, Archie C. ; Verbic, Gregor</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-93e87b761b960e42ffc6b68c88dc51f242ed1812ce32734a9303e63da864c7a83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Australia</topic><topic>Batteries</topic><topic>Clustering</topic><topic>Demand</topic><topic>demand model</topic><topic>dynamic programming (DP)</topic><topic>Economic forecasting</topic><topic>Energy management</topic><topic>Estimation</topic><topic>Identification methods</topic><topic>kernel regression</topic><topic>Markov analysis</topic><topic>Markov chains</topic><topic>Markov decision process (MDP)</topic><topic>Markov processes</topic><topic>Optimization</topic><topic>Predictive models</topic><topic>Residential energy</topic><topic>residential PV model</topic><topic>smart home energy management</topic><topic>Statistical analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Keerthisinghe, Chanaka</creatorcontrib><creatorcontrib>Chapman, Archie C.</creatorcontrib><creatorcontrib>Verbic, Gregor</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on industrial electronics (1982)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Keerthisinghe, Chanaka</au><au>Chapman, Archie C.</au><au>Verbic, Gregor</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>PV and Demand Models for a Markov Decision Process Formulation of the Home Energy Management Problem</atitle><jtitle>IEEE transactions on industrial electronics (1982)</jtitle><stitle>TIE</stitle><date>2019-02-01</date><risdate>2019</risdate><volume>66</volume><issue>2</issue><spage>1424</spage><epage>1433</epage><pages>1424-1433</pages><issn>0278-0046</issn><eissn>1557-9948</eissn><coden>ITIED6</coden><abstract>This paper proposes a hierarchical approach for estimating residential PV and electrical demand models using historical data. In brief, the method involves first clustering historical data into different day types, and then estimating PV and demand models using kernel regression. Clustering is done to capture intraday variations in the PV and demand profiles, with the aim of capturing much of these intertemporal correlations in the day-type labels. This allows the draws from the kernel estimates within a day type to be done independently. This approach conforms with a Markov decision process construction of the smart home energy management system (SHEMS) problem, which is the ultimate target of the modeling procedure. Moreover, in practical applications, the SHEMS will need the type of a coming day in order to select a daily demand model, which can be done seamlessly using state identification methods. In comparison, forecasting a day's demand profile using time series forecasting methods produces a prediction method that does not provide a probability structure that is directly incorporated into a Markov decision process scheduling model.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIE.2018.2850023</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-4949-768X</orcidid><orcidid>https://orcid.org/0000-0003-2803-5224</orcidid><orcidid>https://orcid.org/0000-0002-5055-3004</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0278-0046
ispartof IEEE transactions on industrial electronics (1982), 2019-02, Vol.66 (2), p.1424-1433
issn 0278-0046
1557-9948
language eng
recordid cdi_proquest_journals_2115834624
source IEEE Electronic Library (IEL)
subjects Australia
Batteries
Clustering
Demand
demand model
dynamic programming (DP)
Economic forecasting
Energy management
Estimation
Identification methods
kernel regression
Markov analysis
Markov chains
Markov decision process (MDP)
Markov processes
Optimization
Predictive models
Residential energy
residential PV model
smart home energy management
Statistical analysis
title PV and Demand Models for a Markov Decision Process Formulation of the Home Energy Management Problem
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T03%3A01%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=PV%20and%20Demand%20Models%20for%20a%20Markov%20Decision%20Process%20Formulation%20of%20the%20Home%20Energy%20Management%20Problem&rft.jtitle=IEEE%20transactions%20on%20industrial%20electronics%20(1982)&rft.au=Keerthisinghe,%20Chanaka&rft.date=2019-02-01&rft.volume=66&rft.issue=2&rft.spage=1424&rft.epage=1433&rft.pages=1424-1433&rft.issn=0278-0046&rft.eissn=1557-9948&rft.coden=ITIED6&rft_id=info:doi/10.1109/TIE.2018.2850023&rft_dat=%3Cproquest_RIE%3E2115834624%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2115834624&rft_id=info:pmid/&rft_ieee_id=8402236&rfr_iscdi=true