Band offset and electron affinity of MBE-grown SnSe2
SnSe2 is currently considered a potential two-dimensional material that can form a near-broken gap heterojunction in a tunnel field-effect transistor due to its large electron affinity which is experimentally confirmed in this letter. With the results from internal photoemission and angle-resolved p...
Gespeichert in:
Veröffentlicht in: | Applied physics letters 2018-01, Vol.112 (4) |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 4 |
container_start_page | |
container_title | Applied physics letters |
container_volume | 112 |
creator | Zhang, Qin Li, Mingda (Oscar) Lochocki, Edward B. Vishwanath, Suresh Liu, Xinyu Yan, Rusen Lien, Huai-Hsun Dobrowolska, Malgorzata Furdyna, Jacek Shen, Kyle M. Cheng, Guangjun Hight Walker, Angela R. Gundlach, David J. Xing, Huili G. Nguyen, N. V. |
description | SnSe2 is currently considered a potential two-dimensional material that can form a near-broken gap heterojunction in a tunnel field-effect transistor due to its large electron affinity which is experimentally confirmed in this letter. With the results from internal photoemission and angle-resolved photoemission spectroscopy performed on Al/Al2O3/SnSe2/GaAs and SnSe2/GaAs test structures where SnSe2 is grown on GaAs by molecular beam epitaxy, we ascertain a (5.2 ± 0.1) eV electron affinity of SnSe2. The band offset from the SnSe2 Fermi level to the Al2O3 conduction band minimum is found to be (3.3 ± 0.05) eV and SnSe2 is seen to have a high level of intrinsic electron (n-type) doping with the Fermi level positioned at about 0.2 eV above its conduction band minimum. It is concluded that the electron affinity of SnSe2 is larger than that of most semiconductors and can be combined with other appropriate semiconductors to form near broken-gap heterojunctions for the tunnel field-effect transistor that can potentially achieve high on-currents. |
doi_str_mv | 10.1063/1.5016183 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2115812778</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2115812778</sourcerecordid><originalsourceid>FETCH-LOGICAL-c393t-47afe5394a56d6e18e601f505156b43da630b2bb9936415cfc14b54d916006063</originalsourceid><addsrcrecordid>eNqd0M1OwzAMAOAIgcQYHHiDSpxA6rDrJG2PDI0faYjD4BylbYI6jWQkGWhvT6dN4s7JtvzJls3YJcIEQdItTgSgxIqO2AihLHNCrI7ZCAAol7XAU3YW43IoRUE0YnyqXZd5a6NJ2S41K9Om4F2mre1dn7ZDM3uZzvKP4H9ctnALU5yzE6tX0Vwc4pi9P8ze7p_y-evj8_3dPG-pppTzUlsjqOZayE4arIwEtAIECtlw6rQkaIqmqWuSHEVrW-SN4F2NEkAO14zZ1X7uOvivjYlJLf0muGGlKhBFhUVZVoO63qs2-BiDsWod-k8dtgpB7Z6iUB2eMtibvY1tn3Tqvfsf_vbhD6p1Z-kX9u9sKw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2115812778</pqid></control><display><type>article</type><title>Band offset and electron affinity of MBE-grown SnSe2</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Zhang, Qin ; Li, Mingda (Oscar) ; Lochocki, Edward B. ; Vishwanath, Suresh ; Liu, Xinyu ; Yan, Rusen ; Lien, Huai-Hsun ; Dobrowolska, Malgorzata ; Furdyna, Jacek ; Shen, Kyle M. ; Cheng, Guangjun ; Hight Walker, Angela R. ; Gundlach, David J. ; Xing, Huili G. ; Nguyen, N. V.</creator><creatorcontrib>Zhang, Qin ; Li, Mingda (Oscar) ; Lochocki, Edward B. ; Vishwanath, Suresh ; Liu, Xinyu ; Yan, Rusen ; Lien, Huai-Hsun ; Dobrowolska, Malgorzata ; Furdyna, Jacek ; Shen, Kyle M. ; Cheng, Guangjun ; Hight Walker, Angela R. ; Gundlach, David J. ; Xing, Huili G. ; Nguyen, N. V.</creatorcontrib><description>SnSe2 is currently considered a potential two-dimensional material that can form a near-broken gap heterojunction in a tunnel field-effect transistor due to its large electron affinity which is experimentally confirmed in this letter. With the results from internal photoemission and angle-resolved photoemission spectroscopy performed on Al/Al2O3/SnSe2/GaAs and SnSe2/GaAs test structures where SnSe2 is grown on GaAs by molecular beam epitaxy, we ascertain a (5.2 ± 0.1) eV electron affinity of SnSe2. The band offset from the SnSe2 Fermi level to the Al2O3 conduction band minimum is found to be (3.3 ± 0.05) eV and SnSe2 is seen to have a high level of intrinsic electron (n-type) doping with the Fermi level positioned at about 0.2 eV above its conduction band minimum. It is concluded that the electron affinity of SnSe2 is larger than that of most semiconductors and can be combined with other appropriate semiconductors to form near broken-gap heterojunctions for the tunnel field-effect transistor that can potentially achieve high on-currents.</description><identifier>ISSN: 0003-6951</identifier><identifier>EISSN: 1077-3118</identifier><identifier>DOI: 10.1063/1.5016183</identifier><identifier>CODEN: APPLAB</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Affinity ; Aluminum oxide ; Applied physics ; Conduction bands ; Electron affinity ; Electrons ; Epitaxial growth ; Fermi level ; Field effect transistors ; Gallium arsenide ; Heterojunctions ; Molecular beam epitaxy ; Photoelectric emission ; Semiconductor devices ; Semiconductors ; Silicon ; Transistors</subject><ispartof>Applied physics letters, 2018-01, Vol.112 (4)</ispartof><rights>Author(s)</rights><rights>2018 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c393t-47afe5394a56d6e18e601f505156b43da630b2bb9936415cfc14b54d916006063</citedby><cites>FETCH-LOGICAL-c393t-47afe5394a56d6e18e601f505156b43da630b2bb9936415cfc14b54d916006063</cites><orcidid>0000-0002-7004-6878 ; 0000-0002-2709-3839 ; 0000-0002-4912-9783</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/apl/article-lookup/doi/10.1063/1.5016183$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,776,780,790,4498,27901,27902,76126</link.rule.ids></links><search><creatorcontrib>Zhang, Qin</creatorcontrib><creatorcontrib>Li, Mingda (Oscar)</creatorcontrib><creatorcontrib>Lochocki, Edward B.</creatorcontrib><creatorcontrib>Vishwanath, Suresh</creatorcontrib><creatorcontrib>Liu, Xinyu</creatorcontrib><creatorcontrib>Yan, Rusen</creatorcontrib><creatorcontrib>Lien, Huai-Hsun</creatorcontrib><creatorcontrib>Dobrowolska, Malgorzata</creatorcontrib><creatorcontrib>Furdyna, Jacek</creatorcontrib><creatorcontrib>Shen, Kyle M.</creatorcontrib><creatorcontrib>Cheng, Guangjun</creatorcontrib><creatorcontrib>Hight Walker, Angela R.</creatorcontrib><creatorcontrib>Gundlach, David J.</creatorcontrib><creatorcontrib>Xing, Huili G.</creatorcontrib><creatorcontrib>Nguyen, N. V.</creatorcontrib><title>Band offset and electron affinity of MBE-grown SnSe2</title><title>Applied physics letters</title><description>SnSe2 is currently considered a potential two-dimensional material that can form a near-broken gap heterojunction in a tunnel field-effect transistor due to its large electron affinity which is experimentally confirmed in this letter. With the results from internal photoemission and angle-resolved photoemission spectroscopy performed on Al/Al2O3/SnSe2/GaAs and SnSe2/GaAs test structures where SnSe2 is grown on GaAs by molecular beam epitaxy, we ascertain a (5.2 ± 0.1) eV electron affinity of SnSe2. The band offset from the SnSe2 Fermi level to the Al2O3 conduction band minimum is found to be (3.3 ± 0.05) eV and SnSe2 is seen to have a high level of intrinsic electron (n-type) doping with the Fermi level positioned at about 0.2 eV above its conduction band minimum. It is concluded that the electron affinity of SnSe2 is larger than that of most semiconductors and can be combined with other appropriate semiconductors to form near broken-gap heterojunctions for the tunnel field-effect transistor that can potentially achieve high on-currents.</description><subject>Affinity</subject><subject>Aluminum oxide</subject><subject>Applied physics</subject><subject>Conduction bands</subject><subject>Electron affinity</subject><subject>Electrons</subject><subject>Epitaxial growth</subject><subject>Fermi level</subject><subject>Field effect transistors</subject><subject>Gallium arsenide</subject><subject>Heterojunctions</subject><subject>Molecular beam epitaxy</subject><subject>Photoelectric emission</subject><subject>Semiconductor devices</subject><subject>Semiconductors</subject><subject>Silicon</subject><subject>Transistors</subject><issn>0003-6951</issn><issn>1077-3118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqd0M1OwzAMAOAIgcQYHHiDSpxA6rDrJG2PDI0faYjD4BylbYI6jWQkGWhvT6dN4s7JtvzJls3YJcIEQdItTgSgxIqO2AihLHNCrI7ZCAAol7XAU3YW43IoRUE0YnyqXZd5a6NJ2S41K9Om4F2mre1dn7ZDM3uZzvKP4H9ctnALU5yzE6tX0Vwc4pi9P8ze7p_y-evj8_3dPG-pppTzUlsjqOZayE4arIwEtAIECtlw6rQkaIqmqWuSHEVrW-SN4F2NEkAO14zZ1X7uOvivjYlJLf0muGGlKhBFhUVZVoO63qs2-BiDsWod-k8dtgpB7Z6iUB2eMtibvY1tn3Tqvfsf_vbhD6p1Z-kX9u9sKw</recordid><startdate>20180122</startdate><enddate>20180122</enddate><creator>Zhang, Qin</creator><creator>Li, Mingda (Oscar)</creator><creator>Lochocki, Edward B.</creator><creator>Vishwanath, Suresh</creator><creator>Liu, Xinyu</creator><creator>Yan, Rusen</creator><creator>Lien, Huai-Hsun</creator><creator>Dobrowolska, Malgorzata</creator><creator>Furdyna, Jacek</creator><creator>Shen, Kyle M.</creator><creator>Cheng, Guangjun</creator><creator>Hight Walker, Angela R.</creator><creator>Gundlach, David J.</creator><creator>Xing, Huili G.</creator><creator>Nguyen, N. V.</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-7004-6878</orcidid><orcidid>https://orcid.org/0000-0002-2709-3839</orcidid><orcidid>https://orcid.org/0000-0002-4912-9783</orcidid></search><sort><creationdate>20180122</creationdate><title>Band offset and electron affinity of MBE-grown SnSe2</title><author>Zhang, Qin ; Li, Mingda (Oscar) ; Lochocki, Edward B. ; Vishwanath, Suresh ; Liu, Xinyu ; Yan, Rusen ; Lien, Huai-Hsun ; Dobrowolska, Malgorzata ; Furdyna, Jacek ; Shen, Kyle M. ; Cheng, Guangjun ; Hight Walker, Angela R. ; Gundlach, David J. ; Xing, Huili G. ; Nguyen, N. V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c393t-47afe5394a56d6e18e601f505156b43da630b2bb9936415cfc14b54d916006063</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Affinity</topic><topic>Aluminum oxide</topic><topic>Applied physics</topic><topic>Conduction bands</topic><topic>Electron affinity</topic><topic>Electrons</topic><topic>Epitaxial growth</topic><topic>Fermi level</topic><topic>Field effect transistors</topic><topic>Gallium arsenide</topic><topic>Heterojunctions</topic><topic>Molecular beam epitaxy</topic><topic>Photoelectric emission</topic><topic>Semiconductor devices</topic><topic>Semiconductors</topic><topic>Silicon</topic><topic>Transistors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Qin</creatorcontrib><creatorcontrib>Li, Mingda (Oscar)</creatorcontrib><creatorcontrib>Lochocki, Edward B.</creatorcontrib><creatorcontrib>Vishwanath, Suresh</creatorcontrib><creatorcontrib>Liu, Xinyu</creatorcontrib><creatorcontrib>Yan, Rusen</creatorcontrib><creatorcontrib>Lien, Huai-Hsun</creatorcontrib><creatorcontrib>Dobrowolska, Malgorzata</creatorcontrib><creatorcontrib>Furdyna, Jacek</creatorcontrib><creatorcontrib>Shen, Kyle M.</creatorcontrib><creatorcontrib>Cheng, Guangjun</creatorcontrib><creatorcontrib>Hight Walker, Angela R.</creatorcontrib><creatorcontrib>Gundlach, David J.</creatorcontrib><creatorcontrib>Xing, Huili G.</creatorcontrib><creatorcontrib>Nguyen, N. V.</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Applied physics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Qin</au><au>Li, Mingda (Oscar)</au><au>Lochocki, Edward B.</au><au>Vishwanath, Suresh</au><au>Liu, Xinyu</au><au>Yan, Rusen</au><au>Lien, Huai-Hsun</au><au>Dobrowolska, Malgorzata</au><au>Furdyna, Jacek</au><au>Shen, Kyle M.</au><au>Cheng, Guangjun</au><au>Hight Walker, Angela R.</au><au>Gundlach, David J.</au><au>Xing, Huili G.</au><au>Nguyen, N. V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Band offset and electron affinity of MBE-grown SnSe2</atitle><jtitle>Applied physics letters</jtitle><date>2018-01-22</date><risdate>2018</risdate><volume>112</volume><issue>4</issue><issn>0003-6951</issn><eissn>1077-3118</eissn><coden>APPLAB</coden><abstract>SnSe2 is currently considered a potential two-dimensional material that can form a near-broken gap heterojunction in a tunnel field-effect transistor due to its large electron affinity which is experimentally confirmed in this letter. With the results from internal photoemission and angle-resolved photoemission spectroscopy performed on Al/Al2O3/SnSe2/GaAs and SnSe2/GaAs test structures where SnSe2 is grown on GaAs by molecular beam epitaxy, we ascertain a (5.2 ± 0.1) eV electron affinity of SnSe2. The band offset from the SnSe2 Fermi level to the Al2O3 conduction band minimum is found to be (3.3 ± 0.05) eV and SnSe2 is seen to have a high level of intrinsic electron (n-type) doping with the Fermi level positioned at about 0.2 eV above its conduction band minimum. It is concluded that the electron affinity of SnSe2 is larger than that of most semiconductors and can be combined with other appropriate semiconductors to form near broken-gap heterojunctions for the tunnel field-effect transistor that can potentially achieve high on-currents.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.5016183</doi><tpages>4</tpages><orcidid>https://orcid.org/0000-0002-7004-6878</orcidid><orcidid>https://orcid.org/0000-0002-2709-3839</orcidid><orcidid>https://orcid.org/0000-0002-4912-9783</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0003-6951 |
ispartof | Applied physics letters, 2018-01, Vol.112 (4) |
issn | 0003-6951 1077-3118 |
language | eng |
recordid | cdi_proquest_journals_2115812778 |
source | AIP Journals Complete; Alma/SFX Local Collection |
subjects | Affinity Aluminum oxide Applied physics Conduction bands Electron affinity Electrons Epitaxial growth Fermi level Field effect transistors Gallium arsenide Heterojunctions Molecular beam epitaxy Photoelectric emission Semiconductor devices Semiconductors Silicon Transistors |
title | Band offset and electron affinity of MBE-grown SnSe2 |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T06%3A12%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Band%20offset%20and%20electron%20affinity%20of%20MBE-grown%20SnSe2&rft.jtitle=Applied%20physics%20letters&rft.au=Zhang,%20Qin&rft.date=2018-01-22&rft.volume=112&rft.issue=4&rft.issn=0003-6951&rft.eissn=1077-3118&rft.coden=APPLAB&rft_id=info:doi/10.1063/1.5016183&rft_dat=%3Cproquest_cross%3E2115812778%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2115812778&rft_id=info:pmid/&rfr_iscdi=true |