Band offset and electron affinity of MBE-grown SnSe2

SnSe2 is currently considered a potential two-dimensional material that can form a near-broken gap heterojunction in a tunnel field-effect transistor due to its large electron affinity which is experimentally confirmed in this letter. With the results from internal photoemission and angle-resolved p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied physics letters 2018-01, Vol.112 (4)
Hauptverfasser: Zhang, Qin, Li, Mingda (Oscar), Lochocki, Edward B., Vishwanath, Suresh, Liu, Xinyu, Yan, Rusen, Lien, Huai-Hsun, Dobrowolska, Malgorzata, Furdyna, Jacek, Shen, Kyle M., Cheng, Guangjun, Hight Walker, Angela R., Gundlach, David J., Xing, Huili G., Nguyen, N. V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 4
container_start_page
container_title Applied physics letters
container_volume 112
creator Zhang, Qin
Li, Mingda (Oscar)
Lochocki, Edward B.
Vishwanath, Suresh
Liu, Xinyu
Yan, Rusen
Lien, Huai-Hsun
Dobrowolska, Malgorzata
Furdyna, Jacek
Shen, Kyle M.
Cheng, Guangjun
Hight Walker, Angela R.
Gundlach, David J.
Xing, Huili G.
Nguyen, N. V.
description SnSe2 is currently considered a potential two-dimensional material that can form a near-broken gap heterojunction in a tunnel field-effect transistor due to its large electron affinity which is experimentally confirmed in this letter. With the results from internal photoemission and angle-resolved photoemission spectroscopy performed on Al/Al2O3/SnSe2/GaAs and SnSe2/GaAs test structures where SnSe2 is grown on GaAs by molecular beam epitaxy, we ascertain a (5.2 ± 0.1) eV electron affinity of SnSe2. The band offset from the SnSe2 Fermi level to the Al2O3 conduction band minimum is found to be (3.3 ± 0.05) eV and SnSe2 is seen to have a high level of intrinsic electron (n-type) doping with the Fermi level positioned at about 0.2 eV above its conduction band minimum. It is concluded that the electron affinity of SnSe2 is larger than that of most semiconductors and can be combined with other appropriate semiconductors to form near broken-gap heterojunctions for the tunnel field-effect transistor that can potentially achieve high on-currents.
doi_str_mv 10.1063/1.5016183
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2115812778</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2115812778</sourcerecordid><originalsourceid>FETCH-LOGICAL-c393t-47afe5394a56d6e18e601f505156b43da630b2bb9936415cfc14b54d916006063</originalsourceid><addsrcrecordid>eNqd0M1OwzAMAOAIgcQYHHiDSpxA6rDrJG2PDI0faYjD4BylbYI6jWQkGWhvT6dN4s7JtvzJls3YJcIEQdItTgSgxIqO2AihLHNCrI7ZCAAol7XAU3YW43IoRUE0YnyqXZd5a6NJ2S41K9Om4F2mre1dn7ZDM3uZzvKP4H9ctnALU5yzE6tX0Vwc4pi9P8ze7p_y-evj8_3dPG-pppTzUlsjqOZayE4arIwEtAIECtlw6rQkaIqmqWuSHEVrW-SN4F2NEkAO14zZ1X7uOvivjYlJLf0muGGlKhBFhUVZVoO63qs2-BiDsWod-k8dtgpB7Z6iUB2eMtibvY1tn3Tqvfsf_vbhD6p1Z-kX9u9sKw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2115812778</pqid></control><display><type>article</type><title>Band offset and electron affinity of MBE-grown SnSe2</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Zhang, Qin ; Li, Mingda (Oscar) ; Lochocki, Edward B. ; Vishwanath, Suresh ; Liu, Xinyu ; Yan, Rusen ; Lien, Huai-Hsun ; Dobrowolska, Malgorzata ; Furdyna, Jacek ; Shen, Kyle M. ; Cheng, Guangjun ; Hight Walker, Angela R. ; Gundlach, David J. ; Xing, Huili G. ; Nguyen, N. V.</creator><creatorcontrib>Zhang, Qin ; Li, Mingda (Oscar) ; Lochocki, Edward B. ; Vishwanath, Suresh ; Liu, Xinyu ; Yan, Rusen ; Lien, Huai-Hsun ; Dobrowolska, Malgorzata ; Furdyna, Jacek ; Shen, Kyle M. ; Cheng, Guangjun ; Hight Walker, Angela R. ; Gundlach, David J. ; Xing, Huili G. ; Nguyen, N. V.</creatorcontrib><description>SnSe2 is currently considered a potential two-dimensional material that can form a near-broken gap heterojunction in a tunnel field-effect transistor due to its large electron affinity which is experimentally confirmed in this letter. With the results from internal photoemission and angle-resolved photoemission spectroscopy performed on Al/Al2O3/SnSe2/GaAs and SnSe2/GaAs test structures where SnSe2 is grown on GaAs by molecular beam epitaxy, we ascertain a (5.2 ± 0.1) eV electron affinity of SnSe2. The band offset from the SnSe2 Fermi level to the Al2O3 conduction band minimum is found to be (3.3 ± 0.05) eV and SnSe2 is seen to have a high level of intrinsic electron (n-type) doping with the Fermi level positioned at about 0.2 eV above its conduction band minimum. It is concluded that the electron affinity of SnSe2 is larger than that of most semiconductors and can be combined with other appropriate semiconductors to form near broken-gap heterojunctions for the tunnel field-effect transistor that can potentially achieve high on-currents.</description><identifier>ISSN: 0003-6951</identifier><identifier>EISSN: 1077-3118</identifier><identifier>DOI: 10.1063/1.5016183</identifier><identifier>CODEN: APPLAB</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Affinity ; Aluminum oxide ; Applied physics ; Conduction bands ; Electron affinity ; Electrons ; Epitaxial growth ; Fermi level ; Field effect transistors ; Gallium arsenide ; Heterojunctions ; Molecular beam epitaxy ; Photoelectric emission ; Semiconductor devices ; Semiconductors ; Silicon ; Transistors</subject><ispartof>Applied physics letters, 2018-01, Vol.112 (4)</ispartof><rights>Author(s)</rights><rights>2018 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c393t-47afe5394a56d6e18e601f505156b43da630b2bb9936415cfc14b54d916006063</citedby><cites>FETCH-LOGICAL-c393t-47afe5394a56d6e18e601f505156b43da630b2bb9936415cfc14b54d916006063</cites><orcidid>0000-0002-7004-6878 ; 0000-0002-2709-3839 ; 0000-0002-4912-9783</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/apl/article-lookup/doi/10.1063/1.5016183$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,776,780,790,4498,27901,27902,76126</link.rule.ids></links><search><creatorcontrib>Zhang, Qin</creatorcontrib><creatorcontrib>Li, Mingda (Oscar)</creatorcontrib><creatorcontrib>Lochocki, Edward B.</creatorcontrib><creatorcontrib>Vishwanath, Suresh</creatorcontrib><creatorcontrib>Liu, Xinyu</creatorcontrib><creatorcontrib>Yan, Rusen</creatorcontrib><creatorcontrib>Lien, Huai-Hsun</creatorcontrib><creatorcontrib>Dobrowolska, Malgorzata</creatorcontrib><creatorcontrib>Furdyna, Jacek</creatorcontrib><creatorcontrib>Shen, Kyle M.</creatorcontrib><creatorcontrib>Cheng, Guangjun</creatorcontrib><creatorcontrib>Hight Walker, Angela R.</creatorcontrib><creatorcontrib>Gundlach, David J.</creatorcontrib><creatorcontrib>Xing, Huili G.</creatorcontrib><creatorcontrib>Nguyen, N. V.</creatorcontrib><title>Band offset and electron affinity of MBE-grown SnSe2</title><title>Applied physics letters</title><description>SnSe2 is currently considered a potential two-dimensional material that can form a near-broken gap heterojunction in a tunnel field-effect transistor due to its large electron affinity which is experimentally confirmed in this letter. With the results from internal photoemission and angle-resolved photoemission spectroscopy performed on Al/Al2O3/SnSe2/GaAs and SnSe2/GaAs test structures where SnSe2 is grown on GaAs by molecular beam epitaxy, we ascertain a (5.2 ± 0.1) eV electron affinity of SnSe2. The band offset from the SnSe2 Fermi level to the Al2O3 conduction band minimum is found to be (3.3 ± 0.05) eV and SnSe2 is seen to have a high level of intrinsic electron (n-type) doping with the Fermi level positioned at about 0.2 eV above its conduction band minimum. It is concluded that the electron affinity of SnSe2 is larger than that of most semiconductors and can be combined with other appropriate semiconductors to form near broken-gap heterojunctions for the tunnel field-effect transistor that can potentially achieve high on-currents.</description><subject>Affinity</subject><subject>Aluminum oxide</subject><subject>Applied physics</subject><subject>Conduction bands</subject><subject>Electron affinity</subject><subject>Electrons</subject><subject>Epitaxial growth</subject><subject>Fermi level</subject><subject>Field effect transistors</subject><subject>Gallium arsenide</subject><subject>Heterojunctions</subject><subject>Molecular beam epitaxy</subject><subject>Photoelectric emission</subject><subject>Semiconductor devices</subject><subject>Semiconductors</subject><subject>Silicon</subject><subject>Transistors</subject><issn>0003-6951</issn><issn>1077-3118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqd0M1OwzAMAOAIgcQYHHiDSpxA6rDrJG2PDI0faYjD4BylbYI6jWQkGWhvT6dN4s7JtvzJls3YJcIEQdItTgSgxIqO2AihLHNCrI7ZCAAol7XAU3YW43IoRUE0YnyqXZd5a6NJ2S41K9Om4F2mre1dn7ZDM3uZzvKP4H9ctnALU5yzE6tX0Vwc4pi9P8ze7p_y-evj8_3dPG-pppTzUlsjqOZayE4arIwEtAIECtlw6rQkaIqmqWuSHEVrW-SN4F2NEkAO14zZ1X7uOvivjYlJLf0muGGlKhBFhUVZVoO63qs2-BiDsWod-k8dtgpB7Z6iUB2eMtibvY1tn3Tqvfsf_vbhD6p1Z-kX9u9sKw</recordid><startdate>20180122</startdate><enddate>20180122</enddate><creator>Zhang, Qin</creator><creator>Li, Mingda (Oscar)</creator><creator>Lochocki, Edward B.</creator><creator>Vishwanath, Suresh</creator><creator>Liu, Xinyu</creator><creator>Yan, Rusen</creator><creator>Lien, Huai-Hsun</creator><creator>Dobrowolska, Malgorzata</creator><creator>Furdyna, Jacek</creator><creator>Shen, Kyle M.</creator><creator>Cheng, Guangjun</creator><creator>Hight Walker, Angela R.</creator><creator>Gundlach, David J.</creator><creator>Xing, Huili G.</creator><creator>Nguyen, N. V.</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-7004-6878</orcidid><orcidid>https://orcid.org/0000-0002-2709-3839</orcidid><orcidid>https://orcid.org/0000-0002-4912-9783</orcidid></search><sort><creationdate>20180122</creationdate><title>Band offset and electron affinity of MBE-grown SnSe2</title><author>Zhang, Qin ; Li, Mingda (Oscar) ; Lochocki, Edward B. ; Vishwanath, Suresh ; Liu, Xinyu ; Yan, Rusen ; Lien, Huai-Hsun ; Dobrowolska, Malgorzata ; Furdyna, Jacek ; Shen, Kyle M. ; Cheng, Guangjun ; Hight Walker, Angela R. ; Gundlach, David J. ; Xing, Huili G. ; Nguyen, N. V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c393t-47afe5394a56d6e18e601f505156b43da630b2bb9936415cfc14b54d916006063</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Affinity</topic><topic>Aluminum oxide</topic><topic>Applied physics</topic><topic>Conduction bands</topic><topic>Electron affinity</topic><topic>Electrons</topic><topic>Epitaxial growth</topic><topic>Fermi level</topic><topic>Field effect transistors</topic><topic>Gallium arsenide</topic><topic>Heterojunctions</topic><topic>Molecular beam epitaxy</topic><topic>Photoelectric emission</topic><topic>Semiconductor devices</topic><topic>Semiconductors</topic><topic>Silicon</topic><topic>Transistors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Qin</creatorcontrib><creatorcontrib>Li, Mingda (Oscar)</creatorcontrib><creatorcontrib>Lochocki, Edward B.</creatorcontrib><creatorcontrib>Vishwanath, Suresh</creatorcontrib><creatorcontrib>Liu, Xinyu</creatorcontrib><creatorcontrib>Yan, Rusen</creatorcontrib><creatorcontrib>Lien, Huai-Hsun</creatorcontrib><creatorcontrib>Dobrowolska, Malgorzata</creatorcontrib><creatorcontrib>Furdyna, Jacek</creatorcontrib><creatorcontrib>Shen, Kyle M.</creatorcontrib><creatorcontrib>Cheng, Guangjun</creatorcontrib><creatorcontrib>Hight Walker, Angela R.</creatorcontrib><creatorcontrib>Gundlach, David J.</creatorcontrib><creatorcontrib>Xing, Huili G.</creatorcontrib><creatorcontrib>Nguyen, N. V.</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Applied physics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Qin</au><au>Li, Mingda (Oscar)</au><au>Lochocki, Edward B.</au><au>Vishwanath, Suresh</au><au>Liu, Xinyu</au><au>Yan, Rusen</au><au>Lien, Huai-Hsun</au><au>Dobrowolska, Malgorzata</au><au>Furdyna, Jacek</au><au>Shen, Kyle M.</au><au>Cheng, Guangjun</au><au>Hight Walker, Angela R.</au><au>Gundlach, David J.</au><au>Xing, Huili G.</au><au>Nguyen, N. V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Band offset and electron affinity of MBE-grown SnSe2</atitle><jtitle>Applied physics letters</jtitle><date>2018-01-22</date><risdate>2018</risdate><volume>112</volume><issue>4</issue><issn>0003-6951</issn><eissn>1077-3118</eissn><coden>APPLAB</coden><abstract>SnSe2 is currently considered a potential two-dimensional material that can form a near-broken gap heterojunction in a tunnel field-effect transistor due to its large electron affinity which is experimentally confirmed in this letter. With the results from internal photoemission and angle-resolved photoemission spectroscopy performed on Al/Al2O3/SnSe2/GaAs and SnSe2/GaAs test structures where SnSe2 is grown on GaAs by molecular beam epitaxy, we ascertain a (5.2 ± 0.1) eV electron affinity of SnSe2. The band offset from the SnSe2 Fermi level to the Al2O3 conduction band minimum is found to be (3.3 ± 0.05) eV and SnSe2 is seen to have a high level of intrinsic electron (n-type) doping with the Fermi level positioned at about 0.2 eV above its conduction band minimum. It is concluded that the electron affinity of SnSe2 is larger than that of most semiconductors and can be combined with other appropriate semiconductors to form near broken-gap heterojunctions for the tunnel field-effect transistor that can potentially achieve high on-currents.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.5016183</doi><tpages>4</tpages><orcidid>https://orcid.org/0000-0002-7004-6878</orcidid><orcidid>https://orcid.org/0000-0002-2709-3839</orcidid><orcidid>https://orcid.org/0000-0002-4912-9783</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0003-6951
ispartof Applied physics letters, 2018-01, Vol.112 (4)
issn 0003-6951
1077-3118
language eng
recordid cdi_proquest_journals_2115812778
source AIP Journals Complete; Alma/SFX Local Collection
subjects Affinity
Aluminum oxide
Applied physics
Conduction bands
Electron affinity
Electrons
Epitaxial growth
Fermi level
Field effect transistors
Gallium arsenide
Heterojunctions
Molecular beam epitaxy
Photoelectric emission
Semiconductor devices
Semiconductors
Silicon
Transistors
title Band offset and electron affinity of MBE-grown SnSe2
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T06%3A12%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Band%20offset%20and%20electron%20affinity%20of%20MBE-grown%20SnSe2&rft.jtitle=Applied%20physics%20letters&rft.au=Zhang,%20Qin&rft.date=2018-01-22&rft.volume=112&rft.issue=4&rft.issn=0003-6951&rft.eissn=1077-3118&rft.coden=APPLAB&rft_id=info:doi/10.1063/1.5016183&rft_dat=%3Cproquest_cross%3E2115812778%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2115812778&rft_id=info:pmid/&rfr_iscdi=true