Photo-conductive detection of continuous THz waves via manipulated ultrafast process in nanostructures

Time-domain and frequency-domain terahertz (THz) spectroscopy systems often use materials fabricated with exotic and expensive methods that intentionally introduce defects to meet short carrier lifetime requirements. In this study, we demonstrate the development of a nano-photomixer that meets respo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied physics letters 2018-01, Vol.112 (3)
Hauptverfasser: Moon, Kiwon, Lee, Eui Su, Lee, Il-Min, Park, Dong Woo, Park, Kyung Hyun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 3
container_start_page
container_title Applied physics letters
container_volume 112
creator Moon, Kiwon
Lee, Eui Su
Lee, Il-Min
Park, Dong Woo
Park, Kyung Hyun
description Time-domain and frequency-domain terahertz (THz) spectroscopy systems often use materials fabricated with exotic and expensive methods that intentionally introduce defects to meet short carrier lifetime requirements. In this study, we demonstrate the development of a nano-photomixer that meets response speed requirements without using defect-incorporated, low-temperature-grown (LTG) semiconductors. Instead, we utilized a thin InGaAs layer grown on a semi-insulating InP substrate by metal-organic chemical vapor deposition (MOCVD) combined with nano-electrodes to manipulate local ultrafast photo-carrier dynamics via a carefully designed field-enhancement and plasmon effect. The developed nano-structured photomixer can detect continuous-wave THz radiation up to a frequency of 2 THz with a peak carrier collection efficiency of 5%, which is approximately 10 times better than the reference efficiency of 0.4%. The better efficiency results from the high carrier mobility of the MOCVD-grown InGaAs thin layer with the coincidence of near-field and plasmon-field distributions in the nano-structure. Our result not only provides a generally applicable methodology for manipulating ultrafast carrier dynamics by means of nano-photonic techniques to break the trade-off relation between the carrier lifetime and mobility in typical LTG semiconductors but also contributes to mass-producible photo-conductive THz detectors to facilitate the widespread application of THz technology.
doi_str_mv 10.1063/1.5008790
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2115811623</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2115811623</sourcerecordid><originalsourceid>FETCH-LOGICAL-c292t-33209d7ab1a9ca9211406d407419395af838f41ae0abd4a2db731bc2309fa6f83</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKsH_0HAk8LWzGa_cpSiVijooZ6X2WyCKW1S81HRX29KPXuar4d3Zl5CroHNgDX8HmY1Y10r2AmZAGvbggN0p2TCGONFI2o4JxchrHNZl5xPiH77cNEV0tkxyWj2io4qqpw5S52muR-NTS4Fulr80C_cq0D3BukWrdmlDUY10rSJHjWGSHfeSRUCNZZatC5En0WTV-GSnGncBHX1F6fk_elxNV8Uy9fnl_nDspClKGPBecnE2OIAKCSKEqBizVixtgLBRY26452uABXDYaywHIeWwyBLzoTGJk-n5Oaomy_5TCrEfu2St3lln8XqDqDJb0_J7ZGS3oXgle533mzRf_fA-oONPfR_Nmb27sgGaSIefPkH_gW4YnNK</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2115811623</pqid></control><display><type>article</type><title>Photo-conductive detection of continuous THz waves via manipulated ultrafast process in nanostructures</title><source>AIP Journals</source><source>Alma/SFX Local Collection</source><creator>Moon, Kiwon ; Lee, Eui Su ; Lee, Il-Min ; Park, Dong Woo ; Park, Kyung Hyun</creator><creatorcontrib>Moon, Kiwon ; Lee, Eui Su ; Lee, Il-Min ; Park, Dong Woo ; Park, Kyung Hyun</creatorcontrib><description>Time-domain and frequency-domain terahertz (THz) spectroscopy systems often use materials fabricated with exotic and expensive methods that intentionally introduce defects to meet short carrier lifetime requirements. In this study, we demonstrate the development of a nano-photomixer that meets response speed requirements without using defect-incorporated, low-temperature-grown (LTG) semiconductors. Instead, we utilized a thin InGaAs layer grown on a semi-insulating InP substrate by metal-organic chemical vapor deposition (MOCVD) combined with nano-electrodes to manipulate local ultrafast photo-carrier dynamics via a carefully designed field-enhancement and plasmon effect. The developed nano-structured photomixer can detect continuous-wave THz radiation up to a frequency of 2 THz with a peak carrier collection efficiency of 5%, which is approximately 10 times better than the reference efficiency of 0.4%. The better efficiency results from the high carrier mobility of the MOCVD-grown InGaAs thin layer with the coincidence of near-field and plasmon-field distributions in the nano-structure. Our result not only provides a generally applicable methodology for manipulating ultrafast carrier dynamics by means of nano-photonic techniques to break the trade-off relation between the carrier lifetime and mobility in typical LTG semiconductors but also contributes to mass-producible photo-conductive THz detectors to facilitate the widespread application of THz technology.</description><identifier>ISSN: 0003-6951</identifier><identifier>EISSN: 1077-3118</identifier><identifier>DOI: 10.1063/1.5008790</identifier><identifier>CODEN: APPLAB</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Applied physics ; Carrier lifetime ; Carrier mobility ; Continuous radiation ; Efficiency ; Indium gallium arsenides ; Metalorganic chemical vapor deposition ; Organic chemicals ; Organic chemistry ; Photonics ; Semiconductors ; Substrates ; Terahertz frequencies</subject><ispartof>Applied physics letters, 2018-01, Vol.112 (3)</ispartof><rights>Author(s)</rights><rights>2018 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c292t-33209d7ab1a9ca9211406d407419395af838f41ae0abd4a2db731bc2309fa6f83</citedby><cites>FETCH-LOGICAL-c292t-33209d7ab1a9ca9211406d407419395af838f41ae0abd4a2db731bc2309fa6f83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/apl/article-lookup/doi/10.1063/1.5008790$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,776,780,790,4498,27901,27902,76126</link.rule.ids></links><search><creatorcontrib>Moon, Kiwon</creatorcontrib><creatorcontrib>Lee, Eui Su</creatorcontrib><creatorcontrib>Lee, Il-Min</creatorcontrib><creatorcontrib>Park, Dong Woo</creatorcontrib><creatorcontrib>Park, Kyung Hyun</creatorcontrib><title>Photo-conductive detection of continuous THz waves via manipulated ultrafast process in nanostructures</title><title>Applied physics letters</title><description>Time-domain and frequency-domain terahertz (THz) spectroscopy systems often use materials fabricated with exotic and expensive methods that intentionally introduce defects to meet short carrier lifetime requirements. In this study, we demonstrate the development of a nano-photomixer that meets response speed requirements without using defect-incorporated, low-temperature-grown (LTG) semiconductors. Instead, we utilized a thin InGaAs layer grown on a semi-insulating InP substrate by metal-organic chemical vapor deposition (MOCVD) combined with nano-electrodes to manipulate local ultrafast photo-carrier dynamics via a carefully designed field-enhancement and plasmon effect. The developed nano-structured photomixer can detect continuous-wave THz radiation up to a frequency of 2 THz with a peak carrier collection efficiency of 5%, which is approximately 10 times better than the reference efficiency of 0.4%. The better efficiency results from the high carrier mobility of the MOCVD-grown InGaAs thin layer with the coincidence of near-field and plasmon-field distributions in the nano-structure. Our result not only provides a generally applicable methodology for manipulating ultrafast carrier dynamics by means of nano-photonic techniques to break the trade-off relation between the carrier lifetime and mobility in typical LTG semiconductors but also contributes to mass-producible photo-conductive THz detectors to facilitate the widespread application of THz technology.</description><subject>Applied physics</subject><subject>Carrier lifetime</subject><subject>Carrier mobility</subject><subject>Continuous radiation</subject><subject>Efficiency</subject><subject>Indium gallium arsenides</subject><subject>Metalorganic chemical vapor deposition</subject><subject>Organic chemicals</subject><subject>Organic chemistry</subject><subject>Photonics</subject><subject>Semiconductors</subject><subject>Substrates</subject><subject>Terahertz frequencies</subject><issn>0003-6951</issn><issn>1077-3118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWKsH_0HAk8LWzGa_cpSiVijooZ6X2WyCKW1S81HRX29KPXuar4d3Zl5CroHNgDX8HmY1Y10r2AmZAGvbggN0p2TCGONFI2o4JxchrHNZl5xPiH77cNEV0tkxyWj2io4qqpw5S52muR-NTS4Fulr80C_cq0D3BukWrdmlDUY10rSJHjWGSHfeSRUCNZZatC5En0WTV-GSnGncBHX1F6fk_elxNV8Uy9fnl_nDspClKGPBecnE2OIAKCSKEqBizVixtgLBRY26452uABXDYaywHIeWwyBLzoTGJk-n5Oaomy_5TCrEfu2St3lln8XqDqDJb0_J7ZGS3oXgle533mzRf_fA-oONPfR_Nmb27sgGaSIefPkH_gW4YnNK</recordid><startdate>20180115</startdate><enddate>20180115</enddate><creator>Moon, Kiwon</creator><creator>Lee, Eui Su</creator><creator>Lee, Il-Min</creator><creator>Park, Dong Woo</creator><creator>Park, Kyung Hyun</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20180115</creationdate><title>Photo-conductive detection of continuous THz waves via manipulated ultrafast process in nanostructures</title><author>Moon, Kiwon ; Lee, Eui Su ; Lee, Il-Min ; Park, Dong Woo ; Park, Kyung Hyun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c292t-33209d7ab1a9ca9211406d407419395af838f41ae0abd4a2db731bc2309fa6f83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Applied physics</topic><topic>Carrier lifetime</topic><topic>Carrier mobility</topic><topic>Continuous radiation</topic><topic>Efficiency</topic><topic>Indium gallium arsenides</topic><topic>Metalorganic chemical vapor deposition</topic><topic>Organic chemicals</topic><topic>Organic chemistry</topic><topic>Photonics</topic><topic>Semiconductors</topic><topic>Substrates</topic><topic>Terahertz frequencies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Moon, Kiwon</creatorcontrib><creatorcontrib>Lee, Eui Su</creatorcontrib><creatorcontrib>Lee, Il-Min</creatorcontrib><creatorcontrib>Park, Dong Woo</creatorcontrib><creatorcontrib>Park, Kyung Hyun</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Applied physics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Moon, Kiwon</au><au>Lee, Eui Su</au><au>Lee, Il-Min</au><au>Park, Dong Woo</au><au>Park, Kyung Hyun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Photo-conductive detection of continuous THz waves via manipulated ultrafast process in nanostructures</atitle><jtitle>Applied physics letters</jtitle><date>2018-01-15</date><risdate>2018</risdate><volume>112</volume><issue>3</issue><issn>0003-6951</issn><eissn>1077-3118</eissn><coden>APPLAB</coden><abstract>Time-domain and frequency-domain terahertz (THz) spectroscopy systems often use materials fabricated with exotic and expensive methods that intentionally introduce defects to meet short carrier lifetime requirements. In this study, we demonstrate the development of a nano-photomixer that meets response speed requirements without using defect-incorporated, low-temperature-grown (LTG) semiconductors. Instead, we utilized a thin InGaAs layer grown on a semi-insulating InP substrate by metal-organic chemical vapor deposition (MOCVD) combined with nano-electrodes to manipulate local ultrafast photo-carrier dynamics via a carefully designed field-enhancement and plasmon effect. The developed nano-structured photomixer can detect continuous-wave THz radiation up to a frequency of 2 THz with a peak carrier collection efficiency of 5%, which is approximately 10 times better than the reference efficiency of 0.4%. The better efficiency results from the high carrier mobility of the MOCVD-grown InGaAs thin layer with the coincidence of near-field and plasmon-field distributions in the nano-structure. Our result not only provides a generally applicable methodology for manipulating ultrafast carrier dynamics by means of nano-photonic techniques to break the trade-off relation between the carrier lifetime and mobility in typical LTG semiconductors but also contributes to mass-producible photo-conductive THz detectors to facilitate the widespread application of THz technology.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.5008790</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0003-6951
ispartof Applied physics letters, 2018-01, Vol.112 (3)
issn 0003-6951
1077-3118
language eng
recordid cdi_proquest_journals_2115811623
source AIP Journals; Alma/SFX Local Collection
subjects Applied physics
Carrier lifetime
Carrier mobility
Continuous radiation
Efficiency
Indium gallium arsenides
Metalorganic chemical vapor deposition
Organic chemicals
Organic chemistry
Photonics
Semiconductors
Substrates
Terahertz frequencies
title Photo-conductive detection of continuous THz waves via manipulated ultrafast process in nanostructures
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T19%3A44%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Photo-conductive%20detection%20of%20continuous%20THz%20waves%20via%20manipulated%20ultrafast%20process%20in%20nanostructures&rft.jtitle=Applied%20physics%20letters&rft.au=Moon,%20Kiwon&rft.date=2018-01-15&rft.volume=112&rft.issue=3&rft.issn=0003-6951&rft.eissn=1077-3118&rft.coden=APPLAB&rft_id=info:doi/10.1063/1.5008790&rft_dat=%3Cproquest_cross%3E2115811623%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2115811623&rft_id=info:pmid/&rfr_iscdi=true