Photo-conductive detection of continuous THz waves via manipulated ultrafast process in nanostructures
Time-domain and frequency-domain terahertz (THz) spectroscopy systems often use materials fabricated with exotic and expensive methods that intentionally introduce defects to meet short carrier lifetime requirements. In this study, we demonstrate the development of a nano-photomixer that meets respo...
Gespeichert in:
Veröffentlicht in: | Applied physics letters 2018-01, Vol.112 (3) |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 3 |
container_start_page | |
container_title | Applied physics letters |
container_volume | 112 |
creator | Moon, Kiwon Lee, Eui Su Lee, Il-Min Park, Dong Woo Park, Kyung Hyun |
description | Time-domain and frequency-domain terahertz (THz) spectroscopy systems often use materials fabricated with exotic and expensive methods that intentionally introduce defects to meet short carrier lifetime requirements. In this study, we demonstrate the development of a nano-photomixer that meets response speed requirements without using defect-incorporated, low-temperature-grown (LTG) semiconductors. Instead, we utilized a thin InGaAs layer grown on a semi-insulating InP substrate by metal-organic chemical vapor deposition (MOCVD) combined with nano-electrodes to manipulate local ultrafast photo-carrier dynamics via a carefully designed field-enhancement and plasmon effect. The developed nano-structured photomixer can detect continuous-wave THz radiation up to a frequency of 2 THz with a peak carrier collection efficiency of 5%, which is approximately 10 times better than the reference efficiency of 0.4%. The better efficiency results from the high carrier mobility of the MOCVD-grown InGaAs thin layer with the coincidence of near-field and plasmon-field distributions in the nano-structure. Our result not only provides a generally applicable methodology for manipulating ultrafast carrier dynamics by means of nano-photonic techniques to break the trade-off relation between the carrier lifetime and mobility in typical LTG semiconductors but also contributes to mass-producible photo-conductive THz detectors to facilitate the widespread application of THz technology. |
doi_str_mv | 10.1063/1.5008790 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2115811623</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2115811623</sourcerecordid><originalsourceid>FETCH-LOGICAL-c292t-33209d7ab1a9ca9211406d407419395af838f41ae0abd4a2db731bc2309fa6f83</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKsH_0HAk8LWzGa_cpSiVijooZ6X2WyCKW1S81HRX29KPXuar4d3Zl5CroHNgDX8HmY1Y10r2AmZAGvbggN0p2TCGONFI2o4JxchrHNZl5xPiH77cNEV0tkxyWj2io4qqpw5S52muR-NTS4Fulr80C_cq0D3BukWrdmlDUY10rSJHjWGSHfeSRUCNZZatC5En0WTV-GSnGncBHX1F6fk_elxNV8Uy9fnl_nDspClKGPBecnE2OIAKCSKEqBizVixtgLBRY26452uABXDYaywHIeWwyBLzoTGJk-n5Oaomy_5TCrEfu2St3lln8XqDqDJb0_J7ZGS3oXgle533mzRf_fA-oONPfR_Nmb27sgGaSIefPkH_gW4YnNK</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2115811623</pqid></control><display><type>article</type><title>Photo-conductive detection of continuous THz waves via manipulated ultrafast process in nanostructures</title><source>AIP Journals</source><source>Alma/SFX Local Collection</source><creator>Moon, Kiwon ; Lee, Eui Su ; Lee, Il-Min ; Park, Dong Woo ; Park, Kyung Hyun</creator><creatorcontrib>Moon, Kiwon ; Lee, Eui Su ; Lee, Il-Min ; Park, Dong Woo ; Park, Kyung Hyun</creatorcontrib><description>Time-domain and frequency-domain terahertz (THz) spectroscopy systems often use materials fabricated with exotic and expensive methods that intentionally introduce defects to meet short carrier lifetime requirements. In this study, we demonstrate the development of a nano-photomixer that meets response speed requirements without using defect-incorporated, low-temperature-grown (LTG) semiconductors. Instead, we utilized a thin InGaAs layer grown on a semi-insulating InP substrate by metal-organic chemical vapor deposition (MOCVD) combined with nano-electrodes to manipulate local ultrafast photo-carrier dynamics via a carefully designed field-enhancement and plasmon effect. The developed nano-structured photomixer can detect continuous-wave THz radiation up to a frequency of 2 THz with a peak carrier collection efficiency of 5%, which is approximately 10 times better than the reference efficiency of 0.4%. The better efficiency results from the high carrier mobility of the MOCVD-grown InGaAs thin layer with the coincidence of near-field and plasmon-field distributions in the nano-structure. Our result not only provides a generally applicable methodology for manipulating ultrafast carrier dynamics by means of nano-photonic techniques to break the trade-off relation between the carrier lifetime and mobility in typical LTG semiconductors but also contributes to mass-producible photo-conductive THz detectors to facilitate the widespread application of THz technology.</description><identifier>ISSN: 0003-6951</identifier><identifier>EISSN: 1077-3118</identifier><identifier>DOI: 10.1063/1.5008790</identifier><identifier>CODEN: APPLAB</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Applied physics ; Carrier lifetime ; Carrier mobility ; Continuous radiation ; Efficiency ; Indium gallium arsenides ; Metalorganic chemical vapor deposition ; Organic chemicals ; Organic chemistry ; Photonics ; Semiconductors ; Substrates ; Terahertz frequencies</subject><ispartof>Applied physics letters, 2018-01, Vol.112 (3)</ispartof><rights>Author(s)</rights><rights>2018 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c292t-33209d7ab1a9ca9211406d407419395af838f41ae0abd4a2db731bc2309fa6f83</citedby><cites>FETCH-LOGICAL-c292t-33209d7ab1a9ca9211406d407419395af838f41ae0abd4a2db731bc2309fa6f83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/apl/article-lookup/doi/10.1063/1.5008790$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,776,780,790,4498,27901,27902,76126</link.rule.ids></links><search><creatorcontrib>Moon, Kiwon</creatorcontrib><creatorcontrib>Lee, Eui Su</creatorcontrib><creatorcontrib>Lee, Il-Min</creatorcontrib><creatorcontrib>Park, Dong Woo</creatorcontrib><creatorcontrib>Park, Kyung Hyun</creatorcontrib><title>Photo-conductive detection of continuous THz waves via manipulated ultrafast process in nanostructures</title><title>Applied physics letters</title><description>Time-domain and frequency-domain terahertz (THz) spectroscopy systems often use materials fabricated with exotic and expensive methods that intentionally introduce defects to meet short carrier lifetime requirements. In this study, we demonstrate the development of a nano-photomixer that meets response speed requirements without using defect-incorporated, low-temperature-grown (LTG) semiconductors. Instead, we utilized a thin InGaAs layer grown on a semi-insulating InP substrate by metal-organic chemical vapor deposition (MOCVD) combined with nano-electrodes to manipulate local ultrafast photo-carrier dynamics via a carefully designed field-enhancement and plasmon effect. The developed nano-structured photomixer can detect continuous-wave THz radiation up to a frequency of 2 THz with a peak carrier collection efficiency of 5%, which is approximately 10 times better than the reference efficiency of 0.4%. The better efficiency results from the high carrier mobility of the MOCVD-grown InGaAs thin layer with the coincidence of near-field and plasmon-field distributions in the nano-structure. Our result not only provides a generally applicable methodology for manipulating ultrafast carrier dynamics by means of nano-photonic techniques to break the trade-off relation between the carrier lifetime and mobility in typical LTG semiconductors but also contributes to mass-producible photo-conductive THz detectors to facilitate the widespread application of THz technology.</description><subject>Applied physics</subject><subject>Carrier lifetime</subject><subject>Carrier mobility</subject><subject>Continuous radiation</subject><subject>Efficiency</subject><subject>Indium gallium arsenides</subject><subject>Metalorganic chemical vapor deposition</subject><subject>Organic chemicals</subject><subject>Organic chemistry</subject><subject>Photonics</subject><subject>Semiconductors</subject><subject>Substrates</subject><subject>Terahertz frequencies</subject><issn>0003-6951</issn><issn>1077-3118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWKsH_0HAk8LWzGa_cpSiVijooZ6X2WyCKW1S81HRX29KPXuar4d3Zl5CroHNgDX8HmY1Y10r2AmZAGvbggN0p2TCGONFI2o4JxchrHNZl5xPiH77cNEV0tkxyWj2io4qqpw5S52muR-NTS4Fulr80C_cq0D3BukWrdmlDUY10rSJHjWGSHfeSRUCNZZatC5En0WTV-GSnGncBHX1F6fk_elxNV8Uy9fnl_nDspClKGPBecnE2OIAKCSKEqBizVixtgLBRY26452uABXDYaywHIeWwyBLzoTGJk-n5Oaomy_5TCrEfu2St3lln8XqDqDJb0_J7ZGS3oXgle533mzRf_fA-oONPfR_Nmb27sgGaSIefPkH_gW4YnNK</recordid><startdate>20180115</startdate><enddate>20180115</enddate><creator>Moon, Kiwon</creator><creator>Lee, Eui Su</creator><creator>Lee, Il-Min</creator><creator>Park, Dong Woo</creator><creator>Park, Kyung Hyun</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20180115</creationdate><title>Photo-conductive detection of continuous THz waves via manipulated ultrafast process in nanostructures</title><author>Moon, Kiwon ; Lee, Eui Su ; Lee, Il-Min ; Park, Dong Woo ; Park, Kyung Hyun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c292t-33209d7ab1a9ca9211406d407419395af838f41ae0abd4a2db731bc2309fa6f83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Applied physics</topic><topic>Carrier lifetime</topic><topic>Carrier mobility</topic><topic>Continuous radiation</topic><topic>Efficiency</topic><topic>Indium gallium arsenides</topic><topic>Metalorganic chemical vapor deposition</topic><topic>Organic chemicals</topic><topic>Organic chemistry</topic><topic>Photonics</topic><topic>Semiconductors</topic><topic>Substrates</topic><topic>Terahertz frequencies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Moon, Kiwon</creatorcontrib><creatorcontrib>Lee, Eui Su</creatorcontrib><creatorcontrib>Lee, Il-Min</creatorcontrib><creatorcontrib>Park, Dong Woo</creatorcontrib><creatorcontrib>Park, Kyung Hyun</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Applied physics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Moon, Kiwon</au><au>Lee, Eui Su</au><au>Lee, Il-Min</au><au>Park, Dong Woo</au><au>Park, Kyung Hyun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Photo-conductive detection of continuous THz waves via manipulated ultrafast process in nanostructures</atitle><jtitle>Applied physics letters</jtitle><date>2018-01-15</date><risdate>2018</risdate><volume>112</volume><issue>3</issue><issn>0003-6951</issn><eissn>1077-3118</eissn><coden>APPLAB</coden><abstract>Time-domain and frequency-domain terahertz (THz) spectroscopy systems often use materials fabricated with exotic and expensive methods that intentionally introduce defects to meet short carrier lifetime requirements. In this study, we demonstrate the development of a nano-photomixer that meets response speed requirements without using defect-incorporated, low-temperature-grown (LTG) semiconductors. Instead, we utilized a thin InGaAs layer grown on a semi-insulating InP substrate by metal-organic chemical vapor deposition (MOCVD) combined with nano-electrodes to manipulate local ultrafast photo-carrier dynamics via a carefully designed field-enhancement and plasmon effect. The developed nano-structured photomixer can detect continuous-wave THz radiation up to a frequency of 2 THz with a peak carrier collection efficiency of 5%, which is approximately 10 times better than the reference efficiency of 0.4%. The better efficiency results from the high carrier mobility of the MOCVD-grown InGaAs thin layer with the coincidence of near-field and plasmon-field distributions in the nano-structure. Our result not only provides a generally applicable methodology for manipulating ultrafast carrier dynamics by means of nano-photonic techniques to break the trade-off relation between the carrier lifetime and mobility in typical LTG semiconductors but also contributes to mass-producible photo-conductive THz detectors to facilitate the widespread application of THz technology.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.5008790</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0003-6951 |
ispartof | Applied physics letters, 2018-01, Vol.112 (3) |
issn | 0003-6951 1077-3118 |
language | eng |
recordid | cdi_proquest_journals_2115811623 |
source | AIP Journals; Alma/SFX Local Collection |
subjects | Applied physics Carrier lifetime Carrier mobility Continuous radiation Efficiency Indium gallium arsenides Metalorganic chemical vapor deposition Organic chemicals Organic chemistry Photonics Semiconductors Substrates Terahertz frequencies |
title | Photo-conductive detection of continuous THz waves via manipulated ultrafast process in nanostructures |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T19%3A44%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Photo-conductive%20detection%20of%20continuous%20THz%20waves%20via%20manipulated%20ultrafast%20process%20in%20nanostructures&rft.jtitle=Applied%20physics%20letters&rft.au=Moon,%20Kiwon&rft.date=2018-01-15&rft.volume=112&rft.issue=3&rft.issn=0003-6951&rft.eissn=1077-3118&rft.coden=APPLAB&rft_id=info:doi/10.1063/1.5008790&rft_dat=%3Cproquest_cross%3E2115811623%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2115811623&rft_id=info:pmid/&rfr_iscdi=true |