Lithium ion intercalation in thin crystals of hexagonal TaSe2 gated by a polymer electrolyte

Ionic liquid gating has been used to modify the properties of layered transition metal dichalcogenides (TMDCs), including two-dimensional (2D) crystals of TMDCs used extensively recently in the device work, which has led to observations of properties not seen in the bulk. The main effect comes from...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied physics letters 2018-01, Vol.112 (2)
Hauptverfasser: Wu, Yueshen, Lian, Hailong, He, Jiaming, Liu, Jinyu, Wang, Shun, Xing, Hui, Mao, Zhiqiang, Liu, Ying
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 2
container_start_page
container_title Applied physics letters
container_volume 112
creator Wu, Yueshen
Lian, Hailong
He, Jiaming
Liu, Jinyu
Wang, Shun
Xing, Hui
Mao, Zhiqiang
Liu, Ying
description Ionic liquid gating has been used to modify the properties of layered transition metal dichalcogenides (TMDCs), including two-dimensional (2D) crystals of TMDCs used extensively recently in the device work, which has led to observations of properties not seen in the bulk. The main effect comes from the electrostatic gating due to the strong electric field at the interface. In addition, ionic liquid gating also leads to ion intercalation when the ion size of the gate electrolyte is small compared to the interlayer spacing of TMDCs. However, the microscopic processes of ion intercalation have rarely been explored in layered TMDCs. Here, we employed a technique combining photolithography device fabrication and electrical transport measurements on the thin crystals of hexagonal TaSe2 using multiple channel devices gated by a polymer electrolyte LiClO4/Polyethylene oxide (PEO). The gate voltage and time dependent source-drain resistances of these thin crystals were used to obtain information on the intercalation process, the effect of ion intercalation, and the correlation between the ion occupation of allowed interstitial sites and the device characteristics. We found a gate voltage controlled modulation of the charge density waves and a scattering rate of charge carriers. Our work suggests that ion intercalation can be a useful tool for layered materials engineering and 2D crystal device design.
doi_str_mv 10.1063/1.5008623
format Article
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_journals_2115809068</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2115809068</sourcerecordid><originalsourceid>FETCH-LOGICAL-c389t-fa46046a22723c44a601e994df1be186878da6fe8df18a847a8b098cd041070b3</originalsourceid><addsrcrecordid>eNqdkF1LwzAUhoMoOKcX_oOgVwqdJ02bppcy_IKBF847IaRpumV0TU0ysf_ezA689-rwnvOcrxehSwIzAozekVkOwFlKj9CEQFEklBB-jCYAQBNW5uQUnXm_iTJPKZ2gj4UJa7PbYmM7bLqgnZKtDKPCsdRh5QYfZOuxbfBaf8uV7WSLl_JNp3glg65xNWCJe9sOW-2wbrUKLoqgz9FJExv1xSFO0fvjw3L-nCxen17m94tEUV6GpJEZg4zJNC1SqrJMMiC6LLO6IZUmnPGC15I1mscElzwrJK-g5KqGLL4IFZ2iq3Gu9cEIr0zQaq1s18VLBMmBMlpE6HqEemc_d9oHsbE7F1_xIiUk51AC45G6GSnlrPdON6J3ZivdIAiIvcOCiIPDkb0d2f3GX8_-B39Z9weKvm7oD6xdiHs</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2115809068</pqid></control><display><type>article</type><title>Lithium ion intercalation in thin crystals of hexagonal TaSe2 gated by a polymer electrolyte</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Wu, Yueshen ; Lian, Hailong ; He, Jiaming ; Liu, Jinyu ; Wang, Shun ; Xing, Hui ; Mao, Zhiqiang ; Liu, Ying</creator><creatorcontrib>Wu, Yueshen ; Lian, Hailong ; He, Jiaming ; Liu, Jinyu ; Wang, Shun ; Xing, Hui ; Mao, Zhiqiang ; Liu, Ying ; Louisiana Board of Regents, Baton Rouge, LA (United States)</creatorcontrib><description>Ionic liquid gating has been used to modify the properties of layered transition metal dichalcogenides (TMDCs), including two-dimensional (2D) crystals of TMDCs used extensively recently in the device work, which has led to observations of properties not seen in the bulk. The main effect comes from the electrostatic gating due to the strong electric field at the interface. In addition, ionic liquid gating also leads to ion intercalation when the ion size of the gate electrolyte is small compared to the interlayer spacing of TMDCs. However, the microscopic processes of ion intercalation have rarely been explored in layered TMDCs. Here, we employed a technique combining photolithography device fabrication and electrical transport measurements on the thin crystals of hexagonal TaSe2 using multiple channel devices gated by a polymer electrolyte LiClO4/Polyethylene oxide (PEO). The gate voltage and time dependent source-drain resistances of these thin crystals were used to obtain information on the intercalation process, the effect of ion intercalation, and the correlation between the ion occupation of allowed interstitial sites and the device characteristics. We found a gate voltage controlled modulation of the charge density waves and a scattering rate of charge carriers. Our work suggests that ion intercalation can be a useful tool for layered materials engineering and 2D crystal device design.</description><identifier>ISSN: 0003-6951</identifier><identifier>EISSN: 1077-3118</identifier><identifier>DOI: 10.1063/1.5008623</identifier><identifier>CODEN: APPLAB</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Applied physics ; Charge density waves ; Crystals ; Current carriers ; Design engineering ; Electric potential ; Electrolytes ; Intercalation ; Interlayers ; Ionic liquids ; Ions ; Layered materials ; Lithium ; Lithium ions ; Materials engineering ; MATERIALS SCIENCE ; Photolithography ; Polyethylenes ; Time dependence</subject><ispartof>Applied physics letters, 2018-01, Vol.112 (2)</ispartof><rights>Author(s)</rights><rights>2018 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c389t-fa46046a22723c44a601e994df1be186878da6fe8df18a847a8b098cd041070b3</citedby><cites>FETCH-LOGICAL-c389t-fa46046a22723c44a601e994df1be186878da6fe8df18a847a8b098cd041070b3</cites><orcidid>0000-0002-7062-7605 ; 0000-0002-2594-5081 ; 0000-0002-3101-2587 ; 0000000270627605 ; 0000000225945081 ; 0000000231012587</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/apl/article-lookup/doi/10.1063/1.5008623$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>230,314,776,780,790,881,4497,27903,27904,76131</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1503637$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Wu, Yueshen</creatorcontrib><creatorcontrib>Lian, Hailong</creatorcontrib><creatorcontrib>He, Jiaming</creatorcontrib><creatorcontrib>Liu, Jinyu</creatorcontrib><creatorcontrib>Wang, Shun</creatorcontrib><creatorcontrib>Xing, Hui</creatorcontrib><creatorcontrib>Mao, Zhiqiang</creatorcontrib><creatorcontrib>Liu, Ying</creatorcontrib><creatorcontrib>Louisiana Board of Regents, Baton Rouge, LA (United States)</creatorcontrib><title>Lithium ion intercalation in thin crystals of hexagonal TaSe2 gated by a polymer electrolyte</title><title>Applied physics letters</title><description>Ionic liquid gating has been used to modify the properties of layered transition metal dichalcogenides (TMDCs), including two-dimensional (2D) crystals of TMDCs used extensively recently in the device work, which has led to observations of properties not seen in the bulk. The main effect comes from the electrostatic gating due to the strong electric field at the interface. In addition, ionic liquid gating also leads to ion intercalation when the ion size of the gate electrolyte is small compared to the interlayer spacing of TMDCs. However, the microscopic processes of ion intercalation have rarely been explored in layered TMDCs. Here, we employed a technique combining photolithography device fabrication and electrical transport measurements on the thin crystals of hexagonal TaSe2 using multiple channel devices gated by a polymer electrolyte LiClO4/Polyethylene oxide (PEO). The gate voltage and time dependent source-drain resistances of these thin crystals were used to obtain information on the intercalation process, the effect of ion intercalation, and the correlation between the ion occupation of allowed interstitial sites and the device characteristics. We found a gate voltage controlled modulation of the charge density waves and a scattering rate of charge carriers. Our work suggests that ion intercalation can be a useful tool for layered materials engineering and 2D crystal device design.</description><subject>Applied physics</subject><subject>Charge density waves</subject><subject>Crystals</subject><subject>Current carriers</subject><subject>Design engineering</subject><subject>Electric potential</subject><subject>Electrolytes</subject><subject>Intercalation</subject><subject>Interlayers</subject><subject>Ionic liquids</subject><subject>Ions</subject><subject>Layered materials</subject><subject>Lithium</subject><subject>Lithium ions</subject><subject>Materials engineering</subject><subject>MATERIALS SCIENCE</subject><subject>Photolithography</subject><subject>Polyethylenes</subject><subject>Time dependence</subject><issn>0003-6951</issn><issn>1077-3118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqdkF1LwzAUhoMoOKcX_oOgVwqdJ02bppcy_IKBF847IaRpumV0TU0ysf_ezA689-rwnvOcrxehSwIzAozekVkOwFlKj9CEQFEklBB-jCYAQBNW5uQUnXm_iTJPKZ2gj4UJa7PbYmM7bLqgnZKtDKPCsdRh5QYfZOuxbfBaf8uV7WSLl_JNp3glg65xNWCJe9sOW-2wbrUKLoqgz9FJExv1xSFO0fvjw3L-nCxen17m94tEUV6GpJEZg4zJNC1SqrJMMiC6LLO6IZUmnPGC15I1mscElzwrJK-g5KqGLL4IFZ2iq3Gu9cEIr0zQaq1s18VLBMmBMlpE6HqEemc_d9oHsbE7F1_xIiUk51AC45G6GSnlrPdON6J3ZivdIAiIvcOCiIPDkb0d2f3GX8_-B39Z9weKvm7oD6xdiHs</recordid><startdate>20180108</startdate><enddate>20180108</enddate><creator>Wu, Yueshen</creator><creator>Lian, Hailong</creator><creator>He, Jiaming</creator><creator>Liu, Jinyu</creator><creator>Wang, Shun</creator><creator>Xing, Hui</creator><creator>Mao, Zhiqiang</creator><creator>Liu, Ying</creator><general>American Institute of Physics</general><general>American Institute of Physics (AIP)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-7062-7605</orcidid><orcidid>https://orcid.org/0000-0002-2594-5081</orcidid><orcidid>https://orcid.org/0000-0002-3101-2587</orcidid><orcidid>https://orcid.org/0000000270627605</orcidid><orcidid>https://orcid.org/0000000225945081</orcidid><orcidid>https://orcid.org/0000000231012587</orcidid></search><sort><creationdate>20180108</creationdate><title>Lithium ion intercalation in thin crystals of hexagonal TaSe2 gated by a polymer electrolyte</title><author>Wu, Yueshen ; Lian, Hailong ; He, Jiaming ; Liu, Jinyu ; Wang, Shun ; Xing, Hui ; Mao, Zhiqiang ; Liu, Ying</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c389t-fa46046a22723c44a601e994df1be186878da6fe8df18a847a8b098cd041070b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Applied physics</topic><topic>Charge density waves</topic><topic>Crystals</topic><topic>Current carriers</topic><topic>Design engineering</topic><topic>Electric potential</topic><topic>Electrolytes</topic><topic>Intercalation</topic><topic>Interlayers</topic><topic>Ionic liquids</topic><topic>Ions</topic><topic>Layered materials</topic><topic>Lithium</topic><topic>Lithium ions</topic><topic>Materials engineering</topic><topic>MATERIALS SCIENCE</topic><topic>Photolithography</topic><topic>Polyethylenes</topic><topic>Time dependence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, Yueshen</creatorcontrib><creatorcontrib>Lian, Hailong</creatorcontrib><creatorcontrib>He, Jiaming</creatorcontrib><creatorcontrib>Liu, Jinyu</creatorcontrib><creatorcontrib>Wang, Shun</creatorcontrib><creatorcontrib>Xing, Hui</creatorcontrib><creatorcontrib>Mao, Zhiqiang</creatorcontrib><creatorcontrib>Liu, Ying</creatorcontrib><creatorcontrib>Louisiana Board of Regents, Baton Rouge, LA (United States)</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Applied physics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wu, Yueshen</au><au>Lian, Hailong</au><au>He, Jiaming</au><au>Liu, Jinyu</au><au>Wang, Shun</au><au>Xing, Hui</au><au>Mao, Zhiqiang</au><au>Liu, Ying</au><aucorp>Louisiana Board of Regents, Baton Rouge, LA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Lithium ion intercalation in thin crystals of hexagonal TaSe2 gated by a polymer electrolyte</atitle><jtitle>Applied physics letters</jtitle><date>2018-01-08</date><risdate>2018</risdate><volume>112</volume><issue>2</issue><issn>0003-6951</issn><eissn>1077-3118</eissn><coden>APPLAB</coden><abstract>Ionic liquid gating has been used to modify the properties of layered transition metal dichalcogenides (TMDCs), including two-dimensional (2D) crystals of TMDCs used extensively recently in the device work, which has led to observations of properties not seen in the bulk. The main effect comes from the electrostatic gating due to the strong electric field at the interface. In addition, ionic liquid gating also leads to ion intercalation when the ion size of the gate electrolyte is small compared to the interlayer spacing of TMDCs. However, the microscopic processes of ion intercalation have rarely been explored in layered TMDCs. Here, we employed a technique combining photolithography device fabrication and electrical transport measurements on the thin crystals of hexagonal TaSe2 using multiple channel devices gated by a polymer electrolyte LiClO4/Polyethylene oxide (PEO). The gate voltage and time dependent source-drain resistances of these thin crystals were used to obtain information on the intercalation process, the effect of ion intercalation, and the correlation between the ion occupation of allowed interstitial sites and the device characteristics. We found a gate voltage controlled modulation of the charge density waves and a scattering rate of charge carriers. Our work suggests that ion intercalation can be a useful tool for layered materials engineering and 2D crystal device design.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.5008623</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-7062-7605</orcidid><orcidid>https://orcid.org/0000-0002-2594-5081</orcidid><orcidid>https://orcid.org/0000-0002-3101-2587</orcidid><orcidid>https://orcid.org/0000000270627605</orcidid><orcidid>https://orcid.org/0000000225945081</orcidid><orcidid>https://orcid.org/0000000231012587</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0003-6951
ispartof Applied physics letters, 2018-01, Vol.112 (2)
issn 0003-6951
1077-3118
language eng
recordid cdi_proquest_journals_2115809068
source AIP Journals Complete; Alma/SFX Local Collection
subjects Applied physics
Charge density waves
Crystals
Current carriers
Design engineering
Electric potential
Electrolytes
Intercalation
Interlayers
Ionic liquids
Ions
Layered materials
Lithium
Lithium ions
Materials engineering
MATERIALS SCIENCE
Photolithography
Polyethylenes
Time dependence
title Lithium ion intercalation in thin crystals of hexagonal TaSe2 gated by a polymer electrolyte
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T02%3A25%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Lithium%20ion%20intercalation%20in%20thin%20crystals%20of%20hexagonal%20TaSe2%20gated%20by%20a%20polymer%20electrolyte&rft.jtitle=Applied%20physics%20letters&rft.au=Wu,%20Yueshen&rft.aucorp=Louisiana%20Board%20of%20Regents,%20Baton%20Rouge,%20LA%20(United%20States)&rft.date=2018-01-08&rft.volume=112&rft.issue=2&rft.issn=0003-6951&rft.eissn=1077-3118&rft.coden=APPLAB&rft_id=info:doi/10.1063/1.5008623&rft_dat=%3Cproquest_scita%3E2115809068%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2115809068&rft_id=info:pmid/&rfr_iscdi=true