Field observations of cooling performance of thermosyphons on permafrost under the China-Russia Crude Oil Pipeline

•Mean annual oil temperatures of the CRCOP are higher than 0 °C and show a gradual warming trend.•The permafrost underlying the CRCOP is degrading.•Thermosyphon can cool the underlying permafros, depending on its number, spacing and working duration.•A thaw bulb surrounding the pipe exists even in w...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied thermal engineering 2018-08, Vol.141, p.688-696
Hauptverfasser: Li, Guoyu, Wang, Fei, Ma, Wei, Fortier, Richard, Mu, Yanhu, Zhou, Zhiwei, Mao, Yuncheng, Cai, Yongjun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 696
container_issue
container_start_page 688
container_title Applied thermal engineering
container_volume 141
creator Li, Guoyu
Wang, Fei
Ma, Wei
Fortier, Richard
Mu, Yanhu
Zhou, Zhiwei
Mao, Yuncheng
Cai, Yongjun
description •Mean annual oil temperatures of the CRCOP are higher than 0 °C and show a gradual warming trend.•The permafrost underlying the CRCOP is degrading.•Thermosyphon can cool the underlying permafros, depending on its number, spacing and working duration.•A thaw bulb surrounding the pipe exists even in winter due to a higher oil temperature. The buried China-Russia Crude Oil Pipeline (CRCOP) traverses 441-km discontinuous permafrost zone and has been operating at positive oil temperature since 2011. The underlying permafrost is degrading and thaw settlement occurs in the trench. An instrumented site was established to monitor ground temperature and water content under the CRCOP to evaluate permafrost degradation and cooling performance of the thermosyphons installed near the pipe. Field observations show that: (1) mean annual oil temperatures are higher than 0 °C and show a gradual warming trend (average increase by 2 °C during the observation period from 2012 to 2016; (2) the active layer thickness (ALT) increases by 2.7 m and the deep (15–20 m) permafrost temperature, 2 m away from the uninsulated pipe, rises 0.2 °C from 2014 to 2017; (3) thermosyphon can cool the soils surrounding the pipe and effectively mitigate thawing of underlying permafrost depending on its number, spacing and working duration; and (4) a thaw bulb surrounding the pipe exists even in winter due to a higher oil temperature. Field observations provide a better understanding of permafrost degradation, cooling effect and design parameters of thermosyphons, and basic data for numerical validation, implications for other similar cold regions pipeline engineering.
doi_str_mv 10.1016/j.applthermaleng.2018.06.005
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2115766029</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1359431118309542</els_id><sourcerecordid>2115766029</sourcerecordid><originalsourceid>FETCH-LOGICAL-c358t-f06a0af86cac6189d04c37029def435bbd7731f3f1bac7c3c90fd9dd6728057a3</originalsourceid><addsrcrecordid>eNqNkMFKxDAQhosouK6-Q0CvrZNmm7TgRRZXBUERPYdsMtnN0m1q0gq-vanrxZunCZN_vmG-LLuiUFCg_HpXqL5vhy2GvWqx2xQl0LoAXgBUR9mM1oLlFQd-nN6savIFo_Q0O4txB0DLWixmWVg5bA3x64jhUw3Od5F4S7T3res2pMdgfaJ3Gqf2zyofv_rtT66b_vfKBh8HMnYGw5Qgy63rVP46xugUWYbRIHl2LXlxPSYonmcnVrURL37rPHtf3b0tH_Kn5_vH5e1TrllVD7kFrkDZmmulOa0bAwvNBJSNQbtg1XpthGDUMkvXSgvNdAPWNMZwUdZQCcXm2eWB2wf_MWIc5M6PoUsrZUlpJThPsJS6OaR0uiIGtLIPbq_Cl6QgJ8tyJ_9alpNlCVwmy2l8dRjHdMmnwyCjdph0GRdQD9J49z_QN-HYkVw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2115766029</pqid></control><display><type>article</type><title>Field observations of cooling performance of thermosyphons on permafrost under the China-Russia Crude Oil Pipeline</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Li, Guoyu ; Wang, Fei ; Ma, Wei ; Fortier, Richard ; Mu, Yanhu ; Zhou, Zhiwei ; Mao, Yuncheng ; Cai, Yongjun</creator><creatorcontrib>Li, Guoyu ; Wang, Fei ; Ma, Wei ; Fortier, Richard ; Mu, Yanhu ; Zhou, Zhiwei ; Mao, Yuncheng ; Cai, Yongjun</creatorcontrib><description>•Mean annual oil temperatures of the CRCOP are higher than 0 °C and show a gradual warming trend.•The permafrost underlying the CRCOP is degrading.•Thermosyphon can cool the underlying permafros, depending on its number, spacing and working duration.•A thaw bulb surrounding the pipe exists even in winter due to a higher oil temperature. The buried China-Russia Crude Oil Pipeline (CRCOP) traverses 441-km discontinuous permafrost zone and has been operating at positive oil temperature since 2011. The underlying permafrost is degrading and thaw settlement occurs in the trench. An instrumented site was established to monitor ground temperature and water content under the CRCOP to evaluate permafrost degradation and cooling performance of the thermosyphons installed near the pipe. Field observations show that: (1) mean annual oil temperatures are higher than 0 °C and show a gradual warming trend (average increase by 2 °C during the observation period from 2012 to 2016; (2) the active layer thickness (ALT) increases by 2.7 m and the deep (15–20 m) permafrost temperature, 2 m away from the uninsulated pipe, rises 0.2 °C from 2014 to 2017; (3) thermosyphon can cool the soils surrounding the pipe and effectively mitigate thawing of underlying permafrost depending on its number, spacing and working duration; and (4) a thaw bulb surrounding the pipe exists even in winter due to a higher oil temperature. Field observations provide a better understanding of permafrost degradation, cooling effect and design parameters of thermosyphons, and basic data for numerical validation, implications for other similar cold regions pipeline engineering.</description><identifier>ISSN: 1359-4311</identifier><identifier>EISSN: 1873-5606</identifier><identifier>DOI: 10.1016/j.applthermaleng.2018.06.005</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Buried pipes ; China-Russia Crude Oil Pipeline ; Climate change ; Climate warming ; Cooling effects ; Cooling performance ; Crude oil ; Degradation ; Design parameters ; Moisture content ; Permafrost ; Permafrost degradation ; Petroleum pipelines ; Pipelines ; Thaw settlement ; Thermosyphon ; Thermosyphons ; Thickness</subject><ispartof>Applied thermal engineering, 2018-08, Vol.141, p.688-696</ispartof><rights>2018 Elsevier Ltd</rights><rights>Copyright Elsevier BV Aug 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c358t-f06a0af86cac6189d04c37029def435bbd7731f3f1bac7c3c90fd9dd6728057a3</citedby><cites>FETCH-LOGICAL-c358t-f06a0af86cac6189d04c37029def435bbd7731f3f1bac7c3c90fd9dd6728057a3</cites><orcidid>0000-0002-4651-6251 ; 0000-0002-4409-5799</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.applthermaleng.2018.06.005$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3549,27923,27924,45994</link.rule.ids></links><search><creatorcontrib>Li, Guoyu</creatorcontrib><creatorcontrib>Wang, Fei</creatorcontrib><creatorcontrib>Ma, Wei</creatorcontrib><creatorcontrib>Fortier, Richard</creatorcontrib><creatorcontrib>Mu, Yanhu</creatorcontrib><creatorcontrib>Zhou, Zhiwei</creatorcontrib><creatorcontrib>Mao, Yuncheng</creatorcontrib><creatorcontrib>Cai, Yongjun</creatorcontrib><title>Field observations of cooling performance of thermosyphons on permafrost under the China-Russia Crude Oil Pipeline</title><title>Applied thermal engineering</title><description>•Mean annual oil temperatures of the CRCOP are higher than 0 °C and show a gradual warming trend.•The permafrost underlying the CRCOP is degrading.•Thermosyphon can cool the underlying permafros, depending on its number, spacing and working duration.•A thaw bulb surrounding the pipe exists even in winter due to a higher oil temperature. The buried China-Russia Crude Oil Pipeline (CRCOP) traverses 441-km discontinuous permafrost zone and has been operating at positive oil temperature since 2011. The underlying permafrost is degrading and thaw settlement occurs in the trench. An instrumented site was established to monitor ground temperature and water content under the CRCOP to evaluate permafrost degradation and cooling performance of the thermosyphons installed near the pipe. Field observations show that: (1) mean annual oil temperatures are higher than 0 °C and show a gradual warming trend (average increase by 2 °C during the observation period from 2012 to 2016; (2) the active layer thickness (ALT) increases by 2.7 m and the deep (15–20 m) permafrost temperature, 2 m away from the uninsulated pipe, rises 0.2 °C from 2014 to 2017; (3) thermosyphon can cool the soils surrounding the pipe and effectively mitigate thawing of underlying permafrost depending on its number, spacing and working duration; and (4) a thaw bulb surrounding the pipe exists even in winter due to a higher oil temperature. Field observations provide a better understanding of permafrost degradation, cooling effect and design parameters of thermosyphons, and basic data for numerical validation, implications for other similar cold regions pipeline engineering.</description><subject>Buried pipes</subject><subject>China-Russia Crude Oil Pipeline</subject><subject>Climate change</subject><subject>Climate warming</subject><subject>Cooling effects</subject><subject>Cooling performance</subject><subject>Crude oil</subject><subject>Degradation</subject><subject>Design parameters</subject><subject>Moisture content</subject><subject>Permafrost</subject><subject>Permafrost degradation</subject><subject>Petroleum pipelines</subject><subject>Pipelines</subject><subject>Thaw settlement</subject><subject>Thermosyphon</subject><subject>Thermosyphons</subject><subject>Thickness</subject><issn>1359-4311</issn><issn>1873-5606</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqNkMFKxDAQhosouK6-Q0CvrZNmm7TgRRZXBUERPYdsMtnN0m1q0gq-vanrxZunCZN_vmG-LLuiUFCg_HpXqL5vhy2GvWqx2xQl0LoAXgBUR9mM1oLlFQd-nN6savIFo_Q0O4txB0DLWixmWVg5bA3x64jhUw3Od5F4S7T3res2pMdgfaJ3Gqf2zyofv_rtT66b_vfKBh8HMnYGw5Qgy63rVP46xugUWYbRIHl2LXlxPSYonmcnVrURL37rPHtf3b0tH_Kn5_vH5e1TrllVD7kFrkDZmmulOa0bAwvNBJSNQbtg1XpthGDUMkvXSgvNdAPWNMZwUdZQCcXm2eWB2wf_MWIc5M6PoUsrZUlpJThPsJS6OaR0uiIGtLIPbq_Cl6QgJ8tyJ_9alpNlCVwmy2l8dRjHdMmnwyCjdph0GRdQD9J49z_QN-HYkVw</recordid><startdate>201808</startdate><enddate>201808</enddate><creator>Li, Guoyu</creator><creator>Wang, Fei</creator><creator>Ma, Wei</creator><creator>Fortier, Richard</creator><creator>Mu, Yanhu</creator><creator>Zhou, Zhiwei</creator><creator>Mao, Yuncheng</creator><creator>Cai, Yongjun</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><orcidid>https://orcid.org/0000-0002-4651-6251</orcidid><orcidid>https://orcid.org/0000-0002-4409-5799</orcidid></search><sort><creationdate>201808</creationdate><title>Field observations of cooling performance of thermosyphons on permafrost under the China-Russia Crude Oil Pipeline</title><author>Li, Guoyu ; Wang, Fei ; Ma, Wei ; Fortier, Richard ; Mu, Yanhu ; Zhou, Zhiwei ; Mao, Yuncheng ; Cai, Yongjun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c358t-f06a0af86cac6189d04c37029def435bbd7731f3f1bac7c3c90fd9dd6728057a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Buried pipes</topic><topic>China-Russia Crude Oil Pipeline</topic><topic>Climate change</topic><topic>Climate warming</topic><topic>Cooling effects</topic><topic>Cooling performance</topic><topic>Crude oil</topic><topic>Degradation</topic><topic>Design parameters</topic><topic>Moisture content</topic><topic>Permafrost</topic><topic>Permafrost degradation</topic><topic>Petroleum pipelines</topic><topic>Pipelines</topic><topic>Thaw settlement</topic><topic>Thermosyphon</topic><topic>Thermosyphons</topic><topic>Thickness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Guoyu</creatorcontrib><creatorcontrib>Wang, Fei</creatorcontrib><creatorcontrib>Ma, Wei</creatorcontrib><creatorcontrib>Fortier, Richard</creatorcontrib><creatorcontrib>Mu, Yanhu</creatorcontrib><creatorcontrib>Zhou, Zhiwei</creatorcontrib><creatorcontrib>Mao, Yuncheng</creatorcontrib><creatorcontrib>Cai, Yongjun</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Applied thermal engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Guoyu</au><au>Wang, Fei</au><au>Ma, Wei</au><au>Fortier, Richard</au><au>Mu, Yanhu</au><au>Zhou, Zhiwei</au><au>Mao, Yuncheng</au><au>Cai, Yongjun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Field observations of cooling performance of thermosyphons on permafrost under the China-Russia Crude Oil Pipeline</atitle><jtitle>Applied thermal engineering</jtitle><date>2018-08</date><risdate>2018</risdate><volume>141</volume><spage>688</spage><epage>696</epage><pages>688-696</pages><issn>1359-4311</issn><eissn>1873-5606</eissn><abstract>•Mean annual oil temperatures of the CRCOP are higher than 0 °C and show a gradual warming trend.•The permafrost underlying the CRCOP is degrading.•Thermosyphon can cool the underlying permafros, depending on its number, spacing and working duration.•A thaw bulb surrounding the pipe exists even in winter due to a higher oil temperature. The buried China-Russia Crude Oil Pipeline (CRCOP) traverses 441-km discontinuous permafrost zone and has been operating at positive oil temperature since 2011. The underlying permafrost is degrading and thaw settlement occurs in the trench. An instrumented site was established to monitor ground temperature and water content under the CRCOP to evaluate permafrost degradation and cooling performance of the thermosyphons installed near the pipe. Field observations show that: (1) mean annual oil temperatures are higher than 0 °C and show a gradual warming trend (average increase by 2 °C during the observation period from 2012 to 2016; (2) the active layer thickness (ALT) increases by 2.7 m and the deep (15–20 m) permafrost temperature, 2 m away from the uninsulated pipe, rises 0.2 °C from 2014 to 2017; (3) thermosyphon can cool the soils surrounding the pipe and effectively mitigate thawing of underlying permafrost depending on its number, spacing and working duration; and (4) a thaw bulb surrounding the pipe exists even in winter due to a higher oil temperature. Field observations provide a better understanding of permafrost degradation, cooling effect and design parameters of thermosyphons, and basic data for numerical validation, implications for other similar cold regions pipeline engineering.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.applthermaleng.2018.06.005</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-4651-6251</orcidid><orcidid>https://orcid.org/0000-0002-4409-5799</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1359-4311
ispartof Applied thermal engineering, 2018-08, Vol.141, p.688-696
issn 1359-4311
1873-5606
language eng
recordid cdi_proquest_journals_2115766029
source ScienceDirect Journals (5 years ago - present)
subjects Buried pipes
China-Russia Crude Oil Pipeline
Climate change
Climate warming
Cooling effects
Cooling performance
Crude oil
Degradation
Design parameters
Moisture content
Permafrost
Permafrost degradation
Petroleum pipelines
Pipelines
Thaw settlement
Thermosyphon
Thermosyphons
Thickness
title Field observations of cooling performance of thermosyphons on permafrost under the China-Russia Crude Oil Pipeline
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T18%3A33%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Field%20observations%20of%20cooling%20performance%20of%20thermosyphons%20on%20permafrost%20under%20the%20China-Russia%20Crude%20Oil%20Pipeline&rft.jtitle=Applied%20thermal%20engineering&rft.au=Li,%20Guoyu&rft.date=2018-08&rft.volume=141&rft.spage=688&rft.epage=696&rft.pages=688-696&rft.issn=1359-4311&rft.eissn=1873-5606&rft_id=info:doi/10.1016/j.applthermaleng.2018.06.005&rft_dat=%3Cproquest_cross%3E2115766029%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2115766029&rft_id=info:pmid/&rft_els_id=S1359431118309542&rfr_iscdi=true