Learning Deep Representations from Clinical Data for Chronic Kidney Disease
We study the behavior of a Time-Aware Long Short-Term Memory Autoencoder, a state-of-the-art method, in the context of learning latent representations from irregularly sampled patient data. We identify a key issue in the way such recurrent neural network models are being currently used and show that...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2019-02 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Duc Thanh Anh Luong Chandola, Varun |
description | We study the behavior of a Time-Aware Long Short-Term Memory Autoencoder, a state-of-the-art method, in the context of learning latent representations from irregularly sampled patient data. We identify a key issue in the way such recurrent neural network models are being currently used and show that the solution of the issue leads to significant improvements in the learnt representations on both synthetic and real datasets. A detailed analysis of the improved methodology for representing patients suffering from Chronic Kidney Disease (CKD) using clinical data is provided. Experimental results show that the proposed T-LSTM model is able to capture the long-term trends in the data, while effectively handling the noise in the signal. Finally, we show that by using the latent representations of the CKD patients obtained from the T-LSTM autoencoder, one can identify unusual patient profiles from the target population. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2115560515</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2115560515</sourcerecordid><originalsourceid>FETCH-proquest_journals_21155605153</originalsourceid><addsrcrecordid>eNqNissKwjAQAIMgWLT_sOC5kIep3ltFqCfxLotuNaUmNZse_Ht78AM8DczMTGTaGFXsNlovRM7cSSl1udXWmkw0J8LonX9ATTTAmYZITD5hcsEztDG8oOqddzfsocaE0IYI1TOGSUHj7p4-UDsmZFqJeYs9U_7jUqwP-0t1LIYY3iNxunZhjH5KV62UtaW0ypr_ri_bPjye</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2115560515</pqid></control><display><type>article</type><title>Learning Deep Representations from Clinical Data for Chronic Kidney Disease</title><source>Free E- Journals</source><creator>Duc Thanh Anh Luong ; Chandola, Varun</creator><creatorcontrib>Duc Thanh Anh Luong ; Chandola, Varun</creatorcontrib><description>We study the behavior of a Time-Aware Long Short-Term Memory Autoencoder, a state-of-the-art method, in the context of learning latent representations from irregularly sampled patient data. We identify a key issue in the way such recurrent neural network models are being currently used and show that the solution of the issue leads to significant improvements in the learnt representations on both synthetic and real datasets. A detailed analysis of the improved methodology for representing patients suffering from Chronic Kidney Disease (CKD) using clinical data is provided. Experimental results show that the proposed T-LSTM model is able to capture the long-term trends in the data, while effectively handling the noise in the signal. Finally, we show that by using the latent representations of the CKD patients obtained from the T-LSTM autoencoder, one can identify unusual patient profiles from the target population.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Datasets ; Kidney diseases ; Patients ; Recurrent neural networks ; Representations ; State of the art</subject><ispartof>arXiv.org, 2019-02</ispartof><rights>2019. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Duc Thanh Anh Luong</creatorcontrib><creatorcontrib>Chandola, Varun</creatorcontrib><title>Learning Deep Representations from Clinical Data for Chronic Kidney Disease</title><title>arXiv.org</title><description>We study the behavior of a Time-Aware Long Short-Term Memory Autoencoder, a state-of-the-art method, in the context of learning latent representations from irregularly sampled patient data. We identify a key issue in the way such recurrent neural network models are being currently used and show that the solution of the issue leads to significant improvements in the learnt representations on both synthetic and real datasets. A detailed analysis of the improved methodology for representing patients suffering from Chronic Kidney Disease (CKD) using clinical data is provided. Experimental results show that the proposed T-LSTM model is able to capture the long-term trends in the data, while effectively handling the noise in the signal. Finally, we show that by using the latent representations of the CKD patients obtained from the T-LSTM autoencoder, one can identify unusual patient profiles from the target population.</description><subject>Datasets</subject><subject>Kidney diseases</subject><subject>Patients</subject><subject>Recurrent neural networks</subject><subject>Representations</subject><subject>State of the art</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNissKwjAQAIMgWLT_sOC5kIep3ltFqCfxLotuNaUmNZse_Ht78AM8DczMTGTaGFXsNlovRM7cSSl1udXWmkw0J8LonX9ATTTAmYZITD5hcsEztDG8oOqddzfsocaE0IYI1TOGSUHj7p4-UDsmZFqJeYs9U_7jUqwP-0t1LIYY3iNxunZhjH5KV62UtaW0ypr_ri_bPjye</recordid><startdate>20190209</startdate><enddate>20190209</enddate><creator>Duc Thanh Anh Luong</creator><creator>Chandola, Varun</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20190209</creationdate><title>Learning Deep Representations from Clinical Data for Chronic Kidney Disease</title><author>Duc Thanh Anh Luong ; Chandola, Varun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_21155605153</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Datasets</topic><topic>Kidney diseases</topic><topic>Patients</topic><topic>Recurrent neural networks</topic><topic>Representations</topic><topic>State of the art</topic><toplevel>online_resources</toplevel><creatorcontrib>Duc Thanh Anh Luong</creatorcontrib><creatorcontrib>Chandola, Varun</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Duc Thanh Anh Luong</au><au>Chandola, Varun</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Learning Deep Representations from Clinical Data for Chronic Kidney Disease</atitle><jtitle>arXiv.org</jtitle><date>2019-02-09</date><risdate>2019</risdate><eissn>2331-8422</eissn><abstract>We study the behavior of a Time-Aware Long Short-Term Memory Autoencoder, a state-of-the-art method, in the context of learning latent representations from irregularly sampled patient data. We identify a key issue in the way such recurrent neural network models are being currently used and show that the solution of the issue leads to significant improvements in the learnt representations on both synthetic and real datasets. A detailed analysis of the improved methodology for representing patients suffering from Chronic Kidney Disease (CKD) using clinical data is provided. Experimental results show that the proposed T-LSTM model is able to capture the long-term trends in the data, while effectively handling the noise in the signal. Finally, we show that by using the latent representations of the CKD patients obtained from the T-LSTM autoencoder, one can identify unusual patient profiles from the target population.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2019-02 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2115560515 |
source | Free E- Journals |
subjects | Datasets Kidney diseases Patients Recurrent neural networks Representations State of the art |
title | Learning Deep Representations from Clinical Data for Chronic Kidney Disease |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T23%3A51%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Learning%20Deep%20Representations%20from%20Clinical%20Data%20for%20Chronic%20Kidney%20Disease&rft.jtitle=arXiv.org&rft.au=Duc%20Thanh%20Anh%20Luong&rft.date=2019-02-09&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2115560515%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2115560515&rft_id=info:pmid/&rfr_iscdi=true |