Content-aware point-of-interest recommendation based on convolutional neural network

Point-of-interest (POI) recommendation has become an important approach to help people discover attractive locations. But the extreme sparsity of the user-POI matrix creates a severe challenge. To address this challenge, researchers have begun to explore the review content information for POI recomm...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied intelligence (Dordrecht, Netherlands) Netherlands), 2019-03, Vol.49 (3), p.858-871
Hauptverfasser: Xing, Shuning, Liu, Fang’ai, Wang, Qianqian, Zhao, Xiaohui, Li, Tianlai
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 871
container_issue 3
container_start_page 858
container_title Applied intelligence (Dordrecht, Netherlands)
container_volume 49
creator Xing, Shuning
Liu, Fang’ai
Wang, Qianqian
Zhao, Xiaohui
Li, Tianlai
description Point-of-interest (POI) recommendation has become an important approach to help people discover attractive locations. But the extreme sparsity of the user-POI matrix creates a severe challenge. To address this challenge, researchers have begun to explore the review content information for POI recommendations. Existing methods are based on bag-of-words or embedding techniques which leads to a shallow understanding of user preference. In order to capture valuable information about user preference, we propose a content-aware POI recommendation based on convolutional neural network (CPC). We utilize a convolutional neural network as the foundation of a unified POI recommendation framework and introduce the three types of content information, including POI properties, user interests and sentiment indications. The experimental results indicate that convolutional neural network is very capable of capturing semantic and sentiment information from review content and demonstrate that the relevant information in reviews can improve POI recommendation performance on location-based social networks.
doi_str_mv 10.1007/s10489-018-1276-1
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2115553796</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2115553796</sourcerecordid><originalsourceid>FETCH-LOGICAL-c382t-25634d7c2d9fdd6cabb1ca306ac1514527af43f645d337fe40167f31dc5d85323</originalsourceid><addsrcrecordid>eNp1kEtLAzEUhYMoWKs_wN2A62hunjNLKb6g4KaCu5DmIa1tUpMZi__e1BFcuTqHyzmHy4fQJZBrIETdFCC87TCBFgNVEsMRmoBQDCveqWM0IR3lWMru9RSdlbImhDBGYIIWsxR7H3ts9ib7ZpdW1aeAq_jsS99kb9N266Mz_SrFZmmKd001NsXPtBkOR7Npoh_yj_T7lN_P0Ukwm-IvfnWKXu7vFrNHPH9-eJrdzrFlLe0xFZJxpyx1XXBOWrNcgjWMSGNBABdUmcBZkFw4xlTwnIBUgYGzwrWCUTZFV-PuLqePoX6r12nI9Z-iKYAQgqlO1hSMKZtTKdkHvcurrclfGog-wNMjPF3h6QM8DbVDx06p2fjm89_y_6VvfLBzFQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2115553796</pqid></control><display><type>article</type><title>Content-aware point-of-interest recommendation based on convolutional neural network</title><source>SpringerLink Journals - AutoHoldings</source><creator>Xing, Shuning ; Liu, Fang’ai ; Wang, Qianqian ; Zhao, Xiaohui ; Li, Tianlai</creator><creatorcontrib>Xing, Shuning ; Liu, Fang’ai ; Wang, Qianqian ; Zhao, Xiaohui ; Li, Tianlai</creatorcontrib><description>Point-of-interest (POI) recommendation has become an important approach to help people discover attractive locations. But the extreme sparsity of the user-POI matrix creates a severe challenge. To address this challenge, researchers have begun to explore the review content information for POI recommendations. Existing methods are based on bag-of-words or embedding techniques which leads to a shallow understanding of user preference. In order to capture valuable information about user preference, we propose a content-aware POI recommendation based on convolutional neural network (CPC). We utilize a convolutional neural network as the foundation of a unified POI recommendation framework and introduce the three types of content information, including POI properties, user interests and sentiment indications. The experimental results indicate that convolutional neural network is very capable of capturing semantic and sentiment information from review content and demonstrate that the relevant information in reviews can improve POI recommendation performance on location-based social networks.</description><identifier>ISSN: 0924-669X</identifier><identifier>EISSN: 1573-7497</identifier><identifier>DOI: 10.1007/s10489-018-1276-1</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Artificial Intelligence ; Artificial neural networks ; Computer Science ; Machines ; Manufacturing ; Mechanical Engineering ; Neural networks ; Preferences ; Processes ; Recommender systems ; Social networks ; User behavior</subject><ispartof>Applied intelligence (Dordrecht, Netherlands), 2019-03, Vol.49 (3), p.858-871</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2018</rights><rights>Applied Intelligence is a copyright of Springer, (2018). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c382t-25634d7c2d9fdd6cabb1ca306ac1514527af43f645d337fe40167f31dc5d85323</citedby><cites>FETCH-LOGICAL-c382t-25634d7c2d9fdd6cabb1ca306ac1514527af43f645d337fe40167f31dc5d85323</cites><orcidid>0000-0003-4023-3979</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10489-018-1276-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10489-018-1276-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Xing, Shuning</creatorcontrib><creatorcontrib>Liu, Fang’ai</creatorcontrib><creatorcontrib>Wang, Qianqian</creatorcontrib><creatorcontrib>Zhao, Xiaohui</creatorcontrib><creatorcontrib>Li, Tianlai</creatorcontrib><title>Content-aware point-of-interest recommendation based on convolutional neural network</title><title>Applied intelligence (Dordrecht, Netherlands)</title><addtitle>Appl Intell</addtitle><description>Point-of-interest (POI) recommendation has become an important approach to help people discover attractive locations. But the extreme sparsity of the user-POI matrix creates a severe challenge. To address this challenge, researchers have begun to explore the review content information for POI recommendations. Existing methods are based on bag-of-words or embedding techniques which leads to a shallow understanding of user preference. In order to capture valuable information about user preference, we propose a content-aware POI recommendation based on convolutional neural network (CPC). We utilize a convolutional neural network as the foundation of a unified POI recommendation framework and introduce the three types of content information, including POI properties, user interests and sentiment indications. The experimental results indicate that convolutional neural network is very capable of capturing semantic and sentiment information from review content and demonstrate that the relevant information in reviews can improve POI recommendation performance on location-based social networks.</description><subject>Artificial Intelligence</subject><subject>Artificial neural networks</subject><subject>Computer Science</subject><subject>Machines</subject><subject>Manufacturing</subject><subject>Mechanical Engineering</subject><subject>Neural networks</subject><subject>Preferences</subject><subject>Processes</subject><subject>Recommender systems</subject><subject>Social networks</subject><subject>User behavior</subject><issn>0924-669X</issn><issn>1573-7497</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kEtLAzEUhYMoWKs_wN2A62hunjNLKb6g4KaCu5DmIa1tUpMZi__e1BFcuTqHyzmHy4fQJZBrIETdFCC87TCBFgNVEsMRmoBQDCveqWM0IR3lWMru9RSdlbImhDBGYIIWsxR7H3ts9ib7ZpdW1aeAq_jsS99kb9N266Mz_SrFZmmKd001NsXPtBkOR7Npoh_yj_T7lN_P0Ukwm-IvfnWKXu7vFrNHPH9-eJrdzrFlLe0xFZJxpyx1XXBOWrNcgjWMSGNBABdUmcBZkFw4xlTwnIBUgYGzwrWCUTZFV-PuLqePoX6r12nI9Z-iKYAQgqlO1hSMKZtTKdkHvcurrclfGog-wNMjPF3h6QM8DbVDx06p2fjm89_y_6VvfLBzFQ</recordid><startdate>20190301</startdate><enddate>20190301</enddate><creator>Xing, Shuning</creator><creator>Liu, Fang’ai</creator><creator>Wang, Qianqian</creator><creator>Zhao, Xiaohui</creator><creator>Li, Tianlai</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PSYQQ</scope><scope>PTHSS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0003-4023-3979</orcidid></search><sort><creationdate>20190301</creationdate><title>Content-aware point-of-interest recommendation based on convolutional neural network</title><author>Xing, Shuning ; Liu, Fang’ai ; Wang, Qianqian ; Zhao, Xiaohui ; Li, Tianlai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c382t-25634d7c2d9fdd6cabb1ca306ac1514527af43f645d337fe40167f31dc5d85323</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Artificial Intelligence</topic><topic>Artificial neural networks</topic><topic>Computer Science</topic><topic>Machines</topic><topic>Manufacturing</topic><topic>Mechanical Engineering</topic><topic>Neural networks</topic><topic>Preferences</topic><topic>Processes</topic><topic>Recommender systems</topic><topic>Social networks</topic><topic>User behavior</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xing, Shuning</creatorcontrib><creatorcontrib>Liu, Fang’ai</creatorcontrib><creatorcontrib>Wang, Qianqian</creatorcontrib><creatorcontrib>Zhao, Xiaohui</creatorcontrib><creatorcontrib>Li, Tianlai</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest One Psychology</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Applied intelligence (Dordrecht, Netherlands)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xing, Shuning</au><au>Liu, Fang’ai</au><au>Wang, Qianqian</au><au>Zhao, Xiaohui</au><au>Li, Tianlai</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Content-aware point-of-interest recommendation based on convolutional neural network</atitle><jtitle>Applied intelligence (Dordrecht, Netherlands)</jtitle><stitle>Appl Intell</stitle><date>2019-03-01</date><risdate>2019</risdate><volume>49</volume><issue>3</issue><spage>858</spage><epage>871</epage><pages>858-871</pages><issn>0924-669X</issn><eissn>1573-7497</eissn><abstract>Point-of-interest (POI) recommendation has become an important approach to help people discover attractive locations. But the extreme sparsity of the user-POI matrix creates a severe challenge. To address this challenge, researchers have begun to explore the review content information for POI recommendations. Existing methods are based on bag-of-words or embedding techniques which leads to a shallow understanding of user preference. In order to capture valuable information about user preference, we propose a content-aware POI recommendation based on convolutional neural network (CPC). We utilize a convolutional neural network as the foundation of a unified POI recommendation framework and introduce the three types of content information, including POI properties, user interests and sentiment indications. The experimental results indicate that convolutional neural network is very capable of capturing semantic and sentiment information from review content and demonstrate that the relevant information in reviews can improve POI recommendation performance on location-based social networks.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10489-018-1276-1</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-4023-3979</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0924-669X
ispartof Applied intelligence (Dordrecht, Netherlands), 2019-03, Vol.49 (3), p.858-871
issn 0924-669X
1573-7497
language eng
recordid cdi_proquest_journals_2115553796
source SpringerLink Journals - AutoHoldings
subjects Artificial Intelligence
Artificial neural networks
Computer Science
Machines
Manufacturing
Mechanical Engineering
Neural networks
Preferences
Processes
Recommender systems
Social networks
User behavior
title Content-aware point-of-interest recommendation based on convolutional neural network
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T01%3A29%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Content-aware%20point-of-interest%20recommendation%20based%20on%20convolutional%20neural%20network&rft.jtitle=Applied%20intelligence%20(Dordrecht,%20Netherlands)&rft.au=Xing,%20Shuning&rft.date=2019-03-01&rft.volume=49&rft.issue=3&rft.spage=858&rft.epage=871&rft.pages=858-871&rft.issn=0924-669X&rft.eissn=1573-7497&rft_id=info:doi/10.1007/s10489-018-1276-1&rft_dat=%3Cproquest_cross%3E2115553796%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2115553796&rft_id=info:pmid/&rfr_iscdi=true