Content-aware point-of-interest recommendation based on convolutional neural network
Point-of-interest (POI) recommendation has become an important approach to help people discover attractive locations. But the extreme sparsity of the user-POI matrix creates a severe challenge. To address this challenge, researchers have begun to explore the review content information for POI recomm...
Gespeichert in:
Veröffentlicht in: | Applied intelligence (Dordrecht, Netherlands) Netherlands), 2019-03, Vol.49 (3), p.858-871 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 871 |
---|---|
container_issue | 3 |
container_start_page | 858 |
container_title | Applied intelligence (Dordrecht, Netherlands) |
container_volume | 49 |
creator | Xing, Shuning Liu, Fang’ai Wang, Qianqian Zhao, Xiaohui Li, Tianlai |
description | Point-of-interest (POI) recommendation has become an important approach to help people discover attractive locations. But the extreme sparsity of the user-POI matrix creates a severe challenge. To address this challenge, researchers have begun to explore the review content information for POI recommendations. Existing methods are based on bag-of-words or embedding techniques which leads to a shallow understanding of user preference. In order to capture valuable information about user preference, we propose a content-aware POI recommendation based on convolutional neural network (CPC). We utilize a convolutional neural network as the foundation of a unified POI recommendation framework and introduce the three types of content information, including POI properties, user interests and sentiment indications. The experimental results indicate that convolutional neural network is very capable of capturing semantic and sentiment information from review content and demonstrate that the relevant information in reviews can improve POI recommendation performance on location-based social networks. |
doi_str_mv | 10.1007/s10489-018-1276-1 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2115553796</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2115553796</sourcerecordid><originalsourceid>FETCH-LOGICAL-c382t-25634d7c2d9fdd6cabb1ca306ac1514527af43f645d337fe40167f31dc5d85323</originalsourceid><addsrcrecordid>eNp1kEtLAzEUhYMoWKs_wN2A62hunjNLKb6g4KaCu5DmIa1tUpMZi__e1BFcuTqHyzmHy4fQJZBrIETdFCC87TCBFgNVEsMRmoBQDCveqWM0IR3lWMru9RSdlbImhDBGYIIWsxR7H3ts9ib7ZpdW1aeAq_jsS99kb9N266Mz_SrFZmmKd001NsXPtBkOR7Npoh_yj_T7lN_P0Ukwm-IvfnWKXu7vFrNHPH9-eJrdzrFlLe0xFZJxpyx1XXBOWrNcgjWMSGNBABdUmcBZkFw4xlTwnIBUgYGzwrWCUTZFV-PuLqePoX6r12nI9Z-iKYAQgqlO1hSMKZtTKdkHvcurrclfGog-wNMjPF3h6QM8DbVDx06p2fjm89_y_6VvfLBzFQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2115553796</pqid></control><display><type>article</type><title>Content-aware point-of-interest recommendation based on convolutional neural network</title><source>SpringerLink Journals - AutoHoldings</source><creator>Xing, Shuning ; Liu, Fang’ai ; Wang, Qianqian ; Zhao, Xiaohui ; Li, Tianlai</creator><creatorcontrib>Xing, Shuning ; Liu, Fang’ai ; Wang, Qianqian ; Zhao, Xiaohui ; Li, Tianlai</creatorcontrib><description>Point-of-interest (POI) recommendation has become an important approach to help people discover attractive locations. But the extreme sparsity of the user-POI matrix creates a severe challenge. To address this challenge, researchers have begun to explore the review content information for POI recommendations. Existing methods are based on bag-of-words or embedding techniques which leads to a shallow understanding of user preference. In order to capture valuable information about user preference, we propose a content-aware POI recommendation based on convolutional neural network (CPC). We utilize a convolutional neural network as the foundation of a unified POI recommendation framework and introduce the three types of content information, including POI properties, user interests and sentiment indications. The experimental results indicate that convolutional neural network is very capable of capturing semantic and sentiment information from review content and demonstrate that the relevant information in reviews can improve POI recommendation performance on location-based social networks.</description><identifier>ISSN: 0924-669X</identifier><identifier>EISSN: 1573-7497</identifier><identifier>DOI: 10.1007/s10489-018-1276-1</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Artificial Intelligence ; Artificial neural networks ; Computer Science ; Machines ; Manufacturing ; Mechanical Engineering ; Neural networks ; Preferences ; Processes ; Recommender systems ; Social networks ; User behavior</subject><ispartof>Applied intelligence (Dordrecht, Netherlands), 2019-03, Vol.49 (3), p.858-871</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2018</rights><rights>Applied Intelligence is a copyright of Springer, (2018). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c382t-25634d7c2d9fdd6cabb1ca306ac1514527af43f645d337fe40167f31dc5d85323</citedby><cites>FETCH-LOGICAL-c382t-25634d7c2d9fdd6cabb1ca306ac1514527af43f645d337fe40167f31dc5d85323</cites><orcidid>0000-0003-4023-3979</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10489-018-1276-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10489-018-1276-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Xing, Shuning</creatorcontrib><creatorcontrib>Liu, Fang’ai</creatorcontrib><creatorcontrib>Wang, Qianqian</creatorcontrib><creatorcontrib>Zhao, Xiaohui</creatorcontrib><creatorcontrib>Li, Tianlai</creatorcontrib><title>Content-aware point-of-interest recommendation based on convolutional neural network</title><title>Applied intelligence (Dordrecht, Netherlands)</title><addtitle>Appl Intell</addtitle><description>Point-of-interest (POI) recommendation has become an important approach to help people discover attractive locations. But the extreme sparsity of the user-POI matrix creates a severe challenge. To address this challenge, researchers have begun to explore the review content information for POI recommendations. Existing methods are based on bag-of-words or embedding techniques which leads to a shallow understanding of user preference. In order to capture valuable information about user preference, we propose a content-aware POI recommendation based on convolutional neural network (CPC). We utilize a convolutional neural network as the foundation of a unified POI recommendation framework and introduce the three types of content information, including POI properties, user interests and sentiment indications. The experimental results indicate that convolutional neural network is very capable of capturing semantic and sentiment information from review content and demonstrate that the relevant information in reviews can improve POI recommendation performance on location-based social networks.</description><subject>Artificial Intelligence</subject><subject>Artificial neural networks</subject><subject>Computer Science</subject><subject>Machines</subject><subject>Manufacturing</subject><subject>Mechanical Engineering</subject><subject>Neural networks</subject><subject>Preferences</subject><subject>Processes</subject><subject>Recommender systems</subject><subject>Social networks</subject><subject>User behavior</subject><issn>0924-669X</issn><issn>1573-7497</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kEtLAzEUhYMoWKs_wN2A62hunjNLKb6g4KaCu5DmIa1tUpMZi__e1BFcuTqHyzmHy4fQJZBrIETdFCC87TCBFgNVEsMRmoBQDCveqWM0IR3lWMru9RSdlbImhDBGYIIWsxR7H3ts9ib7ZpdW1aeAq_jsS99kb9N266Mz_SrFZmmKd001NsXPtBkOR7Npoh_yj_T7lN_P0Ukwm-IvfnWKXu7vFrNHPH9-eJrdzrFlLe0xFZJxpyx1XXBOWrNcgjWMSGNBABdUmcBZkFw4xlTwnIBUgYGzwrWCUTZFV-PuLqePoX6r12nI9Z-iKYAQgqlO1hSMKZtTKdkHvcurrclfGog-wNMjPF3h6QM8DbVDx06p2fjm89_y_6VvfLBzFQ</recordid><startdate>20190301</startdate><enddate>20190301</enddate><creator>Xing, Shuning</creator><creator>Liu, Fang’ai</creator><creator>Wang, Qianqian</creator><creator>Zhao, Xiaohui</creator><creator>Li, Tianlai</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PSYQQ</scope><scope>PTHSS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0003-4023-3979</orcidid></search><sort><creationdate>20190301</creationdate><title>Content-aware point-of-interest recommendation based on convolutional neural network</title><author>Xing, Shuning ; Liu, Fang’ai ; Wang, Qianqian ; Zhao, Xiaohui ; Li, Tianlai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c382t-25634d7c2d9fdd6cabb1ca306ac1514527af43f645d337fe40167f31dc5d85323</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Artificial Intelligence</topic><topic>Artificial neural networks</topic><topic>Computer Science</topic><topic>Machines</topic><topic>Manufacturing</topic><topic>Mechanical Engineering</topic><topic>Neural networks</topic><topic>Preferences</topic><topic>Processes</topic><topic>Recommender systems</topic><topic>Social networks</topic><topic>User behavior</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xing, Shuning</creatorcontrib><creatorcontrib>Liu, Fang’ai</creatorcontrib><creatorcontrib>Wang, Qianqian</creatorcontrib><creatorcontrib>Zhao, Xiaohui</creatorcontrib><creatorcontrib>Li, Tianlai</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest One Psychology</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Applied intelligence (Dordrecht, Netherlands)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xing, Shuning</au><au>Liu, Fang’ai</au><au>Wang, Qianqian</au><au>Zhao, Xiaohui</au><au>Li, Tianlai</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Content-aware point-of-interest recommendation based on convolutional neural network</atitle><jtitle>Applied intelligence (Dordrecht, Netherlands)</jtitle><stitle>Appl Intell</stitle><date>2019-03-01</date><risdate>2019</risdate><volume>49</volume><issue>3</issue><spage>858</spage><epage>871</epage><pages>858-871</pages><issn>0924-669X</issn><eissn>1573-7497</eissn><abstract>Point-of-interest (POI) recommendation has become an important approach to help people discover attractive locations. But the extreme sparsity of the user-POI matrix creates a severe challenge. To address this challenge, researchers have begun to explore the review content information for POI recommendations. Existing methods are based on bag-of-words or embedding techniques which leads to a shallow understanding of user preference. In order to capture valuable information about user preference, we propose a content-aware POI recommendation based on convolutional neural network (CPC). We utilize a convolutional neural network as the foundation of a unified POI recommendation framework and introduce the three types of content information, including POI properties, user interests and sentiment indications. The experimental results indicate that convolutional neural network is very capable of capturing semantic and sentiment information from review content and demonstrate that the relevant information in reviews can improve POI recommendation performance on location-based social networks.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10489-018-1276-1</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-4023-3979</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0924-669X |
ispartof | Applied intelligence (Dordrecht, Netherlands), 2019-03, Vol.49 (3), p.858-871 |
issn | 0924-669X 1573-7497 |
language | eng |
recordid | cdi_proquest_journals_2115553796 |
source | SpringerLink Journals - AutoHoldings |
subjects | Artificial Intelligence Artificial neural networks Computer Science Machines Manufacturing Mechanical Engineering Neural networks Preferences Processes Recommender systems Social networks User behavior |
title | Content-aware point-of-interest recommendation based on convolutional neural network |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T01%3A29%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Content-aware%20point-of-interest%20recommendation%20based%20on%20convolutional%20neural%20network&rft.jtitle=Applied%20intelligence%20(Dordrecht,%20Netherlands)&rft.au=Xing,%20Shuning&rft.date=2019-03-01&rft.volume=49&rft.issue=3&rft.spage=858&rft.epage=871&rft.pages=858-871&rft.issn=0924-669X&rft.eissn=1573-7497&rft_id=info:doi/10.1007/s10489-018-1276-1&rft_dat=%3Cproquest_cross%3E2115553796%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2115553796&rft_id=info:pmid/&rfr_iscdi=true |