On the stability and global attractivity of solutions of fractional partial differential equations with uncertainty
In this paper, we study fractional partial differential equations (FPDEs) under Caputo gH-differentiability with uncertainty in type of fuzziness. Using Banach fixed point theorem, we show that the equilibrium point of the problem is stable. The stability is understood in the sense of Lyapunov stabi...
Gespeichert in:
Veröffentlicht in: | Journal of intelligent & fuzzy systems 2018-01, Vol.35 (3), p.3797-3806 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3806 |
---|---|
container_issue | 3 |
container_start_page | 3797 |
container_title | Journal of intelligent & fuzzy systems |
container_volume | 35 |
creator | Son, Nguyen Thi Kim Tam, Ha Thi Thanh |
description | In this paper, we study fractional partial differential equations (FPDEs) under Caputo gH-differentiability with uncertainty in type of fuzziness. Using Banach fixed point theorem, we show that the equilibrium point of the problem is stable. The stability is understood in the sense of Lyapunov stability. Moreover, by constructing a basic space of integral solutions, we prove global existence of fuzzy decay solutions of the problem. Some examples are also given to illustrate our main results. |
doi_str_mv | 10.3233/JIFS-18675 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2115450466</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2115450466</sourcerecordid><originalsourceid>FETCH-LOGICAL-c259t-5794a88c599561957752251fa775eae1e3a9f3a0791551c9a5f9490b27f0ff413</originalsourceid><addsrcrecordid>eNotkM1OwzAQhC0EEqVw4QkicUMKeBP_xEdUUSiq1ANwjrapTV0Fu7UdUN6epOW0M7ufVqMh5BboQ1mU5ePbYv6eQyUkPyMTqCTPKyXk-aCpYDkUTFySqxh3lILkBZ2QuHJZ2uosJlzb1qY-Q7fJvlq_xjbDlAI2yf6Me2-y6NsuWe_iaMzx5N3A7TEkO8yNNUYH7Y5GHzo8wb82bbPONToktC711-TCYBv1zf-cks_588fsNV-uXhazp2XeFFylnEvFsKoarhQXoLgcEhccDA5CowZdojIlUqmAc2gUcqOYoutCGmoMg3JK7k5_98EfOh1TvfNdGALHugDgjFMmxEDdn6gm-BiDNvU-2G8MfQ20Hkutx1LrY6nlH62na0Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2115450466</pqid></control><display><type>article</type><title>On the stability and global attractivity of solutions of fractional partial differential equations with uncertainty</title><source>EBSCOhost Business Source Complete</source><creator>Son, Nguyen Thi Kim ; Tam, Ha Thi Thanh</creator><creatorcontrib>Son, Nguyen Thi Kim ; Tam, Ha Thi Thanh</creatorcontrib><description>In this paper, we study fractional partial differential equations (FPDEs) under Caputo gH-differentiability with uncertainty in type of fuzziness. Using Banach fixed point theorem, we show that the equilibrium point of the problem is stable. The stability is understood in the sense of Lyapunov stability. Moreover, by constructing a basic space of integral solutions, we prove global existence of fuzzy decay solutions of the problem. Some examples are also given to illustrate our main results.</description><identifier>ISSN: 1064-1246</identifier><identifier>EISSN: 1875-8967</identifier><identifier>DOI: 10.3233/JIFS-18675</identifier><language>eng</language><publisher>Amsterdam: IOS Press BV</publisher><subject>Fixed points (mathematics) ; Mathematical analysis ; Partial differential equations ; Stability ; Uncertainty</subject><ispartof>Journal of intelligent & fuzzy systems, 2018-01, Vol.35 (3), p.3797-3806</ispartof><rights>Copyright IOS Press BV 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c259t-5794a88c599561957752251fa775eae1e3a9f3a0791551c9a5f9490b27f0ff413</citedby><cites>FETCH-LOGICAL-c259t-5794a88c599561957752251fa775eae1e3a9f3a0791551c9a5f9490b27f0ff413</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Son, Nguyen Thi Kim</creatorcontrib><creatorcontrib>Tam, Ha Thi Thanh</creatorcontrib><title>On the stability and global attractivity of solutions of fractional partial differential equations with uncertainty</title><title>Journal of intelligent & fuzzy systems</title><description>In this paper, we study fractional partial differential equations (FPDEs) under Caputo gH-differentiability with uncertainty in type of fuzziness. Using Banach fixed point theorem, we show that the equilibrium point of the problem is stable. The stability is understood in the sense of Lyapunov stability. Moreover, by constructing a basic space of integral solutions, we prove global existence of fuzzy decay solutions of the problem. Some examples are also given to illustrate our main results.</description><subject>Fixed points (mathematics)</subject><subject>Mathematical analysis</subject><subject>Partial differential equations</subject><subject>Stability</subject><subject>Uncertainty</subject><issn>1064-1246</issn><issn>1875-8967</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNotkM1OwzAQhC0EEqVw4QkicUMKeBP_xEdUUSiq1ANwjrapTV0Fu7UdUN6epOW0M7ufVqMh5BboQ1mU5ePbYv6eQyUkPyMTqCTPKyXk-aCpYDkUTFySqxh3lILkBZ2QuHJZ2uosJlzb1qY-Q7fJvlq_xjbDlAI2yf6Me2-y6NsuWe_iaMzx5N3A7TEkO8yNNUYH7Y5GHzo8wb82bbPONToktC711-TCYBv1zf-cks_588fsNV-uXhazp2XeFFylnEvFsKoarhQXoLgcEhccDA5CowZdojIlUqmAc2gUcqOYoutCGmoMg3JK7k5_98EfOh1TvfNdGALHugDgjFMmxEDdn6gm-BiDNvU-2G8MfQ20Hkutx1LrY6nlH62na0Q</recordid><startdate>20180101</startdate><enddate>20180101</enddate><creator>Son, Nguyen Thi Kim</creator><creator>Tam, Ha Thi Thanh</creator><general>IOS Press BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20180101</creationdate><title>On the stability and global attractivity of solutions of fractional partial differential equations with uncertainty</title><author>Son, Nguyen Thi Kim ; Tam, Ha Thi Thanh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c259t-5794a88c599561957752251fa775eae1e3a9f3a0791551c9a5f9490b27f0ff413</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Fixed points (mathematics)</topic><topic>Mathematical analysis</topic><topic>Partial differential equations</topic><topic>Stability</topic><topic>Uncertainty</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Son, Nguyen Thi Kim</creatorcontrib><creatorcontrib>Tam, Ha Thi Thanh</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of intelligent & fuzzy systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Son, Nguyen Thi Kim</au><au>Tam, Ha Thi Thanh</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the stability and global attractivity of solutions of fractional partial differential equations with uncertainty</atitle><jtitle>Journal of intelligent & fuzzy systems</jtitle><date>2018-01-01</date><risdate>2018</risdate><volume>35</volume><issue>3</issue><spage>3797</spage><epage>3806</epage><pages>3797-3806</pages><issn>1064-1246</issn><eissn>1875-8967</eissn><abstract>In this paper, we study fractional partial differential equations (FPDEs) under Caputo gH-differentiability with uncertainty in type of fuzziness. Using Banach fixed point theorem, we show that the equilibrium point of the problem is stable. The stability is understood in the sense of Lyapunov stability. Moreover, by constructing a basic space of integral solutions, we prove global existence of fuzzy decay solutions of the problem. Some examples are also given to illustrate our main results.</abstract><cop>Amsterdam</cop><pub>IOS Press BV</pub><doi>10.3233/JIFS-18675</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1064-1246 |
ispartof | Journal of intelligent & fuzzy systems, 2018-01, Vol.35 (3), p.3797-3806 |
issn | 1064-1246 1875-8967 |
language | eng |
recordid | cdi_proquest_journals_2115450466 |
source | EBSCOhost Business Source Complete |
subjects | Fixed points (mathematics) Mathematical analysis Partial differential equations Stability Uncertainty |
title | On the stability and global attractivity of solutions of fractional partial differential equations with uncertainty |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T03%3A53%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20stability%20and%20global%20attractivity%20of%20solutions%20of%20fractional%20partial%20differential%20equations%20with%20uncertainty&rft.jtitle=Journal%20of%20intelligent%20&%20fuzzy%20systems&rft.au=Son,%20Nguyen%20Thi%20Kim&rft.date=2018-01-01&rft.volume=35&rft.issue=3&rft.spage=3797&rft.epage=3806&rft.pages=3797-3806&rft.issn=1064-1246&rft.eissn=1875-8967&rft_id=info:doi/10.3233/JIFS-18675&rft_dat=%3Cproquest_cross%3E2115450466%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2115450466&rft_id=info:pmid/&rfr_iscdi=true |