On the stability and global attractivity of solutions of fractional partial differential equations with uncertainty

In this paper, we study fractional partial differential equations (FPDEs) under Caputo gH-differentiability with uncertainty in type of fuzziness. Using Banach fixed point theorem, we show that the equilibrium point of the problem is stable. The stability is understood in the sense of Lyapunov stabi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of intelligent & fuzzy systems 2018-01, Vol.35 (3), p.3797-3806
Hauptverfasser: Son, Nguyen Thi Kim, Tam, Ha Thi Thanh
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3806
container_issue 3
container_start_page 3797
container_title Journal of intelligent & fuzzy systems
container_volume 35
creator Son, Nguyen Thi Kim
Tam, Ha Thi Thanh
description In this paper, we study fractional partial differential equations (FPDEs) under Caputo gH-differentiability with uncertainty in type of fuzziness. Using Banach fixed point theorem, we show that the equilibrium point of the problem is stable. The stability is understood in the sense of Lyapunov stability. Moreover, by constructing a basic space of integral solutions, we prove global existence of fuzzy decay solutions of the problem. Some examples are also given to illustrate our main results.
doi_str_mv 10.3233/JIFS-18675
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2115450466</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2115450466</sourcerecordid><originalsourceid>FETCH-LOGICAL-c259t-5794a88c599561957752251fa775eae1e3a9f3a0791551c9a5f9490b27f0ff413</originalsourceid><addsrcrecordid>eNotkM1OwzAQhC0EEqVw4QkicUMKeBP_xEdUUSiq1ANwjrapTV0Fu7UdUN6epOW0M7ufVqMh5BboQ1mU5ePbYv6eQyUkPyMTqCTPKyXk-aCpYDkUTFySqxh3lILkBZ2QuHJZ2uosJlzb1qY-Q7fJvlq_xjbDlAI2yf6Me2-y6NsuWe_iaMzx5N3A7TEkO8yNNUYH7Y5GHzo8wb82bbPONToktC711-TCYBv1zf-cks_588fsNV-uXhazp2XeFFylnEvFsKoarhQXoLgcEhccDA5CowZdojIlUqmAc2gUcqOYoutCGmoMg3JK7k5_98EfOh1TvfNdGALHugDgjFMmxEDdn6gm-BiDNvU-2G8MfQ20Hkutx1LrY6nlH62na0Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2115450466</pqid></control><display><type>article</type><title>On the stability and global attractivity of solutions of fractional partial differential equations with uncertainty</title><source>EBSCOhost Business Source Complete</source><creator>Son, Nguyen Thi Kim ; Tam, Ha Thi Thanh</creator><creatorcontrib>Son, Nguyen Thi Kim ; Tam, Ha Thi Thanh</creatorcontrib><description>In this paper, we study fractional partial differential equations (FPDEs) under Caputo gH-differentiability with uncertainty in type of fuzziness. Using Banach fixed point theorem, we show that the equilibrium point of the problem is stable. The stability is understood in the sense of Lyapunov stability. Moreover, by constructing a basic space of integral solutions, we prove global existence of fuzzy decay solutions of the problem. Some examples are also given to illustrate our main results.</description><identifier>ISSN: 1064-1246</identifier><identifier>EISSN: 1875-8967</identifier><identifier>DOI: 10.3233/JIFS-18675</identifier><language>eng</language><publisher>Amsterdam: IOS Press BV</publisher><subject>Fixed points (mathematics) ; Mathematical analysis ; Partial differential equations ; Stability ; Uncertainty</subject><ispartof>Journal of intelligent &amp; fuzzy systems, 2018-01, Vol.35 (3), p.3797-3806</ispartof><rights>Copyright IOS Press BV 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c259t-5794a88c599561957752251fa775eae1e3a9f3a0791551c9a5f9490b27f0ff413</citedby><cites>FETCH-LOGICAL-c259t-5794a88c599561957752251fa775eae1e3a9f3a0791551c9a5f9490b27f0ff413</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Son, Nguyen Thi Kim</creatorcontrib><creatorcontrib>Tam, Ha Thi Thanh</creatorcontrib><title>On the stability and global attractivity of solutions of fractional partial differential equations with uncertainty</title><title>Journal of intelligent &amp; fuzzy systems</title><description>In this paper, we study fractional partial differential equations (FPDEs) under Caputo gH-differentiability with uncertainty in type of fuzziness. Using Banach fixed point theorem, we show that the equilibrium point of the problem is stable. The stability is understood in the sense of Lyapunov stability. Moreover, by constructing a basic space of integral solutions, we prove global existence of fuzzy decay solutions of the problem. Some examples are also given to illustrate our main results.</description><subject>Fixed points (mathematics)</subject><subject>Mathematical analysis</subject><subject>Partial differential equations</subject><subject>Stability</subject><subject>Uncertainty</subject><issn>1064-1246</issn><issn>1875-8967</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNotkM1OwzAQhC0EEqVw4QkicUMKeBP_xEdUUSiq1ANwjrapTV0Fu7UdUN6epOW0M7ufVqMh5BboQ1mU5ePbYv6eQyUkPyMTqCTPKyXk-aCpYDkUTFySqxh3lILkBZ2QuHJZ2uosJlzb1qY-Q7fJvlq_xjbDlAI2yf6Me2-y6NsuWe_iaMzx5N3A7TEkO8yNNUYH7Y5GHzo8wb82bbPONToktC711-TCYBv1zf-cks_588fsNV-uXhazp2XeFFylnEvFsKoarhQXoLgcEhccDA5CowZdojIlUqmAc2gUcqOYoutCGmoMg3JK7k5_98EfOh1TvfNdGALHugDgjFMmxEDdn6gm-BiDNvU-2G8MfQ20Hkutx1LrY6nlH62na0Q</recordid><startdate>20180101</startdate><enddate>20180101</enddate><creator>Son, Nguyen Thi Kim</creator><creator>Tam, Ha Thi Thanh</creator><general>IOS Press BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20180101</creationdate><title>On the stability and global attractivity of solutions of fractional partial differential equations with uncertainty</title><author>Son, Nguyen Thi Kim ; Tam, Ha Thi Thanh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c259t-5794a88c599561957752251fa775eae1e3a9f3a0791551c9a5f9490b27f0ff413</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Fixed points (mathematics)</topic><topic>Mathematical analysis</topic><topic>Partial differential equations</topic><topic>Stability</topic><topic>Uncertainty</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Son, Nguyen Thi Kim</creatorcontrib><creatorcontrib>Tam, Ha Thi Thanh</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of intelligent &amp; fuzzy systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Son, Nguyen Thi Kim</au><au>Tam, Ha Thi Thanh</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the stability and global attractivity of solutions of fractional partial differential equations with uncertainty</atitle><jtitle>Journal of intelligent &amp; fuzzy systems</jtitle><date>2018-01-01</date><risdate>2018</risdate><volume>35</volume><issue>3</issue><spage>3797</spage><epage>3806</epage><pages>3797-3806</pages><issn>1064-1246</issn><eissn>1875-8967</eissn><abstract>In this paper, we study fractional partial differential equations (FPDEs) under Caputo gH-differentiability with uncertainty in type of fuzziness. Using Banach fixed point theorem, we show that the equilibrium point of the problem is stable. The stability is understood in the sense of Lyapunov stability. Moreover, by constructing a basic space of integral solutions, we prove global existence of fuzzy decay solutions of the problem. Some examples are also given to illustrate our main results.</abstract><cop>Amsterdam</cop><pub>IOS Press BV</pub><doi>10.3233/JIFS-18675</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1064-1246
ispartof Journal of intelligent & fuzzy systems, 2018-01, Vol.35 (3), p.3797-3806
issn 1064-1246
1875-8967
language eng
recordid cdi_proquest_journals_2115450466
source EBSCOhost Business Source Complete
subjects Fixed points (mathematics)
Mathematical analysis
Partial differential equations
Stability
Uncertainty
title On the stability and global attractivity of solutions of fractional partial differential equations with uncertainty
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T03%3A53%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20stability%20and%20global%20attractivity%20of%20solutions%20of%20fractional%20partial%20differential%20equations%20with%20uncertainty&rft.jtitle=Journal%20of%20intelligent%20&%20fuzzy%20systems&rft.au=Son,%20Nguyen%20Thi%20Kim&rft.date=2018-01-01&rft.volume=35&rft.issue=3&rft.spage=3797&rft.epage=3806&rft.pages=3797-3806&rft.issn=1064-1246&rft.eissn=1875-8967&rft_id=info:doi/10.3233/JIFS-18675&rft_dat=%3Cproquest_cross%3E2115450466%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2115450466&rft_id=info:pmid/&rfr_iscdi=true