Nonstationary models for liquid crystals: A fresh mathematical perspective
In this article, we discuss nonstationary models for inhomogeneous liquid crystals driven out of equilibrium by flow. Emphasis is put on those models which are used in the mathematics as well as in the physics literature, the overall goal being to illustrate the mathematical progress on these models...
Gespeichert in:
Veröffentlicht in: | Journal of non-Newtonian fluid mechanics 2018-09, Vol.259, p.32-47 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 47 |
---|---|
container_issue | |
container_start_page | 32 |
container_title | Journal of non-Newtonian fluid mechanics |
container_volume | 259 |
creator | Emmrich, Etienne Klapp, Sabine H.L. Lasarzik, Robert |
description | In this article, we discuss nonstationary models for inhomogeneous liquid crystals driven out of equilibrium by flow. Emphasis is put on those models which are used in the mathematics as well as in the physics literature, the overall goal being to illustrate the mathematical progress on these models to date. Our discussion includes the Doi–Hess model for the orientational distribution function, the Q-tensor model and the Ericksen–Leslie model which focuses on the director dynamics. We survey particularly the mathematical issues (such as existence of solutions) and linkages between these models. Moreover, we introduce the new concept of relative energies measuring the distance between solutions of equation systems with nonconvex energy functionals and discuss possible applications of this concept for future studies. |
doi_str_mv | 10.1016/j.jnnfm.2018.05.003 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2115245139</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2115245139</sourcerecordid><originalsourceid>FETCH-LOGICAL-c314t-127193fa6ed6f6c584cdbc6fc2103d477163b379368ae37f994b0b8fef2d6adf3</originalsourceid><addsrcrecordid>eNotkE1PwzAMhiMEEmPwC7hE4twSx23ScpsmGKAJLnCO2nxorfq1pEPavydj-GAf3ke2_BByDywFBuKxTdthcH3KGRQpy1PG8IIsoJCYcIFwSRYMpUwYz-U1uQmhZbFyFAvy_jEOYa7mZhwqf6T9aGwXqBs97Zr9oTFU-2PMu_BEV9R5G3a0r-adja3RVUcn68Nk9dz82Fty5SJo7_7nkny_PH-tX5Pt5-ZtvdomGiGbE-ASSnSVsEY4ofMi06bWwmkODE0mJQisUZYoisqidGWZ1awunHXciMo4XJKH897Jj_uDDbNqx4Mf4knFAXKe5YBlpPBMaT-G4K1Tk2_6-KMCpk7SVKv-pKmTNMVyFaXhL9S_Ym4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2115245139</pqid></control><display><type>article</type><title>Nonstationary models for liquid crystals: A fresh mathematical perspective</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Emmrich, Etienne ; Klapp, Sabine H.L. ; Lasarzik, Robert</creator><creatorcontrib>Emmrich, Etienne ; Klapp, Sabine H.L. ; Lasarzik, Robert</creatorcontrib><description>In this article, we discuss nonstationary models for inhomogeneous liquid crystals driven out of equilibrium by flow. Emphasis is put on those models which are used in the mathematics as well as in the physics literature, the overall goal being to illustrate the mathematical progress on these models to date. Our discussion includes the Doi–Hess model for the orientational distribution function, the Q-tensor model and the Ericksen–Leslie model which focuses on the director dynamics. We survey particularly the mathematical issues (such as existence of solutions) and linkages between these models. Moreover, we introduce the new concept of relative energies measuring the distance between solutions of equation systems with nonconvex energy functionals and discuss possible applications of this concept for future studies.</description><identifier>ISSN: 0377-0257</identifier><identifier>EISSN: 1873-2631</identifier><identifier>DOI: 10.1016/j.jnnfm.2018.05.003</identifier><language>eng</language><publisher>Amsterdam: Elsevier BV</publisher><subject>Crystals ; Distribution functions ; Fluids ; Functionals ; Liquid crystals ; Mathematical models ; Mathematics</subject><ispartof>Journal of non-Newtonian fluid mechanics, 2018-09, Vol.259, p.32-47</ispartof><rights>Copyright Elsevier BV Sep 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c314t-127193fa6ed6f6c584cdbc6fc2103d477163b379368ae37f994b0b8fef2d6adf3</citedby><cites>FETCH-LOGICAL-c314t-127193fa6ed6f6c584cdbc6fc2103d477163b379368ae37f994b0b8fef2d6adf3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Emmrich, Etienne</creatorcontrib><creatorcontrib>Klapp, Sabine H.L.</creatorcontrib><creatorcontrib>Lasarzik, Robert</creatorcontrib><title>Nonstationary models for liquid crystals: A fresh mathematical perspective</title><title>Journal of non-Newtonian fluid mechanics</title><description>In this article, we discuss nonstationary models for inhomogeneous liquid crystals driven out of equilibrium by flow. Emphasis is put on those models which are used in the mathematics as well as in the physics literature, the overall goal being to illustrate the mathematical progress on these models to date. Our discussion includes the Doi–Hess model for the orientational distribution function, the Q-tensor model and the Ericksen–Leslie model which focuses on the director dynamics. We survey particularly the mathematical issues (such as existence of solutions) and linkages between these models. Moreover, we introduce the new concept of relative energies measuring the distance between solutions of equation systems with nonconvex energy functionals and discuss possible applications of this concept for future studies.</description><subject>Crystals</subject><subject>Distribution functions</subject><subject>Fluids</subject><subject>Functionals</subject><subject>Liquid crystals</subject><subject>Mathematical models</subject><subject>Mathematics</subject><issn>0377-0257</issn><issn>1873-2631</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNotkE1PwzAMhiMEEmPwC7hE4twSx23ScpsmGKAJLnCO2nxorfq1pEPavydj-GAf3ke2_BByDywFBuKxTdthcH3KGRQpy1PG8IIsoJCYcIFwSRYMpUwYz-U1uQmhZbFyFAvy_jEOYa7mZhwqf6T9aGwXqBs97Zr9oTFU-2PMu_BEV9R5G3a0r-adja3RVUcn68Nk9dz82Fty5SJo7_7nkny_PH-tX5Pt5-ZtvdomGiGbE-ASSnSVsEY4ofMi06bWwmkODE0mJQisUZYoisqidGWZ1awunHXciMo4XJKH897Jj_uDDbNqx4Mf4knFAXKe5YBlpPBMaT-G4K1Tk2_6-KMCpk7SVKv-pKmTNMVyFaXhL9S_Ym4</recordid><startdate>20180901</startdate><enddate>20180901</enddate><creator>Emmrich, Etienne</creator><creator>Klapp, Sabine H.L.</creator><creator>Lasarzik, Robert</creator><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>20180901</creationdate><title>Nonstationary models for liquid crystals: A fresh mathematical perspective</title><author>Emmrich, Etienne ; Klapp, Sabine H.L. ; Lasarzik, Robert</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c314t-127193fa6ed6f6c584cdbc6fc2103d477163b379368ae37f994b0b8fef2d6adf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Crystals</topic><topic>Distribution functions</topic><topic>Fluids</topic><topic>Functionals</topic><topic>Liquid crystals</topic><topic>Mathematical models</topic><topic>Mathematics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Emmrich, Etienne</creatorcontrib><creatorcontrib>Klapp, Sabine H.L.</creatorcontrib><creatorcontrib>Lasarzik, Robert</creatorcontrib><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of non-Newtonian fluid mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Emmrich, Etienne</au><au>Klapp, Sabine H.L.</au><au>Lasarzik, Robert</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nonstationary models for liquid crystals: A fresh mathematical perspective</atitle><jtitle>Journal of non-Newtonian fluid mechanics</jtitle><date>2018-09-01</date><risdate>2018</risdate><volume>259</volume><spage>32</spage><epage>47</epage><pages>32-47</pages><issn>0377-0257</issn><eissn>1873-2631</eissn><abstract>In this article, we discuss nonstationary models for inhomogeneous liquid crystals driven out of equilibrium by flow. Emphasis is put on those models which are used in the mathematics as well as in the physics literature, the overall goal being to illustrate the mathematical progress on these models to date. Our discussion includes the Doi–Hess model for the orientational distribution function, the Q-tensor model and the Ericksen–Leslie model which focuses on the director dynamics. We survey particularly the mathematical issues (such as existence of solutions) and linkages between these models. Moreover, we introduce the new concept of relative energies measuring the distance between solutions of equation systems with nonconvex energy functionals and discuss possible applications of this concept for future studies.</abstract><cop>Amsterdam</cop><pub>Elsevier BV</pub><doi>10.1016/j.jnnfm.2018.05.003</doi><tpages>16</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0377-0257 |
ispartof | Journal of non-Newtonian fluid mechanics, 2018-09, Vol.259, p.32-47 |
issn | 0377-0257 1873-2631 |
language | eng |
recordid | cdi_proquest_journals_2115245139 |
source | ScienceDirect Journals (5 years ago - present) |
subjects | Crystals Distribution functions Fluids Functionals Liquid crystals Mathematical models Mathematics |
title | Nonstationary models for liquid crystals: A fresh mathematical perspective |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T08%3A02%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nonstationary%20models%20for%20liquid%20crystals:%20A%20fresh%20mathematical%20perspective&rft.jtitle=Journal%20of%20non-Newtonian%20fluid%20mechanics&rft.au=Emmrich,%20Etienne&rft.date=2018-09-01&rft.volume=259&rft.spage=32&rft.epage=47&rft.pages=32-47&rft.issn=0377-0257&rft.eissn=1873-2631&rft_id=info:doi/10.1016/j.jnnfm.2018.05.003&rft_dat=%3Cproquest_cross%3E2115245139%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2115245139&rft_id=info:pmid/&rfr_iscdi=true |