Nonstationary models for liquid crystals: A fresh mathematical perspective

In this article, we discuss nonstationary models for inhomogeneous liquid crystals driven out of equilibrium by flow. Emphasis is put on those models which are used in the mathematics as well as in the physics literature, the overall goal being to illustrate the mathematical progress on these models...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of non-Newtonian fluid mechanics 2018-09, Vol.259, p.32-47
Hauptverfasser: Emmrich, Etienne, Klapp, Sabine H.L., Lasarzik, Robert
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 47
container_issue
container_start_page 32
container_title Journal of non-Newtonian fluid mechanics
container_volume 259
creator Emmrich, Etienne
Klapp, Sabine H.L.
Lasarzik, Robert
description In this article, we discuss nonstationary models for inhomogeneous liquid crystals driven out of equilibrium by flow. Emphasis is put on those models which are used in the mathematics as well as in the physics literature, the overall goal being to illustrate the mathematical progress on these models to date. Our discussion includes the Doi–Hess model for the orientational distribution function, the Q-tensor model and the Ericksen–Leslie model which focuses on the director dynamics. We survey particularly the mathematical issues (such as existence of solutions) and linkages between these models. Moreover, we introduce the new concept of relative energies measuring the distance between solutions of equation systems with nonconvex energy functionals and discuss possible applications of this concept for future studies.
doi_str_mv 10.1016/j.jnnfm.2018.05.003
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2115245139</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2115245139</sourcerecordid><originalsourceid>FETCH-LOGICAL-c314t-127193fa6ed6f6c584cdbc6fc2103d477163b379368ae37f994b0b8fef2d6adf3</originalsourceid><addsrcrecordid>eNotkE1PwzAMhiMEEmPwC7hE4twSx23ScpsmGKAJLnCO2nxorfq1pEPavydj-GAf3ke2_BByDywFBuKxTdthcH3KGRQpy1PG8IIsoJCYcIFwSRYMpUwYz-U1uQmhZbFyFAvy_jEOYa7mZhwqf6T9aGwXqBs97Zr9oTFU-2PMu_BEV9R5G3a0r-adja3RVUcn68Nk9dz82Fty5SJo7_7nkny_PH-tX5Pt5-ZtvdomGiGbE-ASSnSVsEY4ofMi06bWwmkODE0mJQisUZYoisqidGWZ1awunHXciMo4XJKH897Jj_uDDbNqx4Mf4knFAXKe5YBlpPBMaT-G4K1Tk2_6-KMCpk7SVKv-pKmTNMVyFaXhL9S_Ym4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2115245139</pqid></control><display><type>article</type><title>Nonstationary models for liquid crystals: A fresh mathematical perspective</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Emmrich, Etienne ; Klapp, Sabine H.L. ; Lasarzik, Robert</creator><creatorcontrib>Emmrich, Etienne ; Klapp, Sabine H.L. ; Lasarzik, Robert</creatorcontrib><description>In this article, we discuss nonstationary models for inhomogeneous liquid crystals driven out of equilibrium by flow. Emphasis is put on those models which are used in the mathematics as well as in the physics literature, the overall goal being to illustrate the mathematical progress on these models to date. Our discussion includes the Doi–Hess model for the orientational distribution function, the Q-tensor model and the Ericksen–Leslie model which focuses on the director dynamics. We survey particularly the mathematical issues (such as existence of solutions) and linkages between these models. Moreover, we introduce the new concept of relative energies measuring the distance between solutions of equation systems with nonconvex energy functionals and discuss possible applications of this concept for future studies.</description><identifier>ISSN: 0377-0257</identifier><identifier>EISSN: 1873-2631</identifier><identifier>DOI: 10.1016/j.jnnfm.2018.05.003</identifier><language>eng</language><publisher>Amsterdam: Elsevier BV</publisher><subject>Crystals ; Distribution functions ; Fluids ; Functionals ; Liquid crystals ; Mathematical models ; Mathematics</subject><ispartof>Journal of non-Newtonian fluid mechanics, 2018-09, Vol.259, p.32-47</ispartof><rights>Copyright Elsevier BV Sep 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c314t-127193fa6ed6f6c584cdbc6fc2103d477163b379368ae37f994b0b8fef2d6adf3</citedby><cites>FETCH-LOGICAL-c314t-127193fa6ed6f6c584cdbc6fc2103d477163b379368ae37f994b0b8fef2d6adf3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Emmrich, Etienne</creatorcontrib><creatorcontrib>Klapp, Sabine H.L.</creatorcontrib><creatorcontrib>Lasarzik, Robert</creatorcontrib><title>Nonstationary models for liquid crystals: A fresh mathematical perspective</title><title>Journal of non-Newtonian fluid mechanics</title><description>In this article, we discuss nonstationary models for inhomogeneous liquid crystals driven out of equilibrium by flow. Emphasis is put on those models which are used in the mathematics as well as in the physics literature, the overall goal being to illustrate the mathematical progress on these models to date. Our discussion includes the Doi–Hess model for the orientational distribution function, the Q-tensor model and the Ericksen–Leslie model which focuses on the director dynamics. We survey particularly the mathematical issues (such as existence of solutions) and linkages between these models. Moreover, we introduce the new concept of relative energies measuring the distance between solutions of equation systems with nonconvex energy functionals and discuss possible applications of this concept for future studies.</description><subject>Crystals</subject><subject>Distribution functions</subject><subject>Fluids</subject><subject>Functionals</subject><subject>Liquid crystals</subject><subject>Mathematical models</subject><subject>Mathematics</subject><issn>0377-0257</issn><issn>1873-2631</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNotkE1PwzAMhiMEEmPwC7hE4twSx23ScpsmGKAJLnCO2nxorfq1pEPavydj-GAf3ke2_BByDywFBuKxTdthcH3KGRQpy1PG8IIsoJCYcIFwSRYMpUwYz-U1uQmhZbFyFAvy_jEOYa7mZhwqf6T9aGwXqBs97Zr9oTFU-2PMu_BEV9R5G3a0r-adja3RVUcn68Nk9dz82Fty5SJo7_7nkny_PH-tX5Pt5-ZtvdomGiGbE-ASSnSVsEY4ofMi06bWwmkODE0mJQisUZYoisqidGWZ1awunHXciMo4XJKH897Jj_uDDbNqx4Mf4knFAXKe5YBlpPBMaT-G4K1Tk2_6-KMCpk7SVKv-pKmTNMVyFaXhL9S_Ym4</recordid><startdate>20180901</startdate><enddate>20180901</enddate><creator>Emmrich, Etienne</creator><creator>Klapp, Sabine H.L.</creator><creator>Lasarzik, Robert</creator><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>20180901</creationdate><title>Nonstationary models for liquid crystals: A fresh mathematical perspective</title><author>Emmrich, Etienne ; Klapp, Sabine H.L. ; Lasarzik, Robert</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c314t-127193fa6ed6f6c584cdbc6fc2103d477163b379368ae37f994b0b8fef2d6adf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Crystals</topic><topic>Distribution functions</topic><topic>Fluids</topic><topic>Functionals</topic><topic>Liquid crystals</topic><topic>Mathematical models</topic><topic>Mathematics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Emmrich, Etienne</creatorcontrib><creatorcontrib>Klapp, Sabine H.L.</creatorcontrib><creatorcontrib>Lasarzik, Robert</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of non-Newtonian fluid mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Emmrich, Etienne</au><au>Klapp, Sabine H.L.</au><au>Lasarzik, Robert</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nonstationary models for liquid crystals: A fresh mathematical perspective</atitle><jtitle>Journal of non-Newtonian fluid mechanics</jtitle><date>2018-09-01</date><risdate>2018</risdate><volume>259</volume><spage>32</spage><epage>47</epage><pages>32-47</pages><issn>0377-0257</issn><eissn>1873-2631</eissn><abstract>In this article, we discuss nonstationary models for inhomogeneous liquid crystals driven out of equilibrium by flow. Emphasis is put on those models which are used in the mathematics as well as in the physics literature, the overall goal being to illustrate the mathematical progress on these models to date. Our discussion includes the Doi–Hess model for the orientational distribution function, the Q-tensor model and the Ericksen–Leslie model which focuses on the director dynamics. We survey particularly the mathematical issues (such as existence of solutions) and linkages between these models. Moreover, we introduce the new concept of relative energies measuring the distance between solutions of equation systems with nonconvex energy functionals and discuss possible applications of this concept for future studies.</abstract><cop>Amsterdam</cop><pub>Elsevier BV</pub><doi>10.1016/j.jnnfm.2018.05.003</doi><tpages>16</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0377-0257
ispartof Journal of non-Newtonian fluid mechanics, 2018-09, Vol.259, p.32-47
issn 0377-0257
1873-2631
language eng
recordid cdi_proquest_journals_2115245139
source ScienceDirect Journals (5 years ago - present)
subjects Crystals
Distribution functions
Fluids
Functionals
Liquid crystals
Mathematical models
Mathematics
title Nonstationary models for liquid crystals: A fresh mathematical perspective
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T08%3A02%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nonstationary%20models%20for%20liquid%20crystals:%20A%20fresh%20mathematical%20perspective&rft.jtitle=Journal%20of%20non-Newtonian%20fluid%20mechanics&rft.au=Emmrich,%20Etienne&rft.date=2018-09-01&rft.volume=259&rft.spage=32&rft.epage=47&rft.pages=32-47&rft.issn=0377-0257&rft.eissn=1873-2631&rft_id=info:doi/10.1016/j.jnnfm.2018.05.003&rft_dat=%3Cproquest_cross%3E2115245139%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2115245139&rft_id=info:pmid/&rfr_iscdi=true