An application of two-stage quantile regression to insurance ratemaking

Two-part models based on generalized linear models are widely used in insurance rate-making for predicting the expected loss. This paper explores an alternative method based on quantile regression which provides more information about the loss distribution and can be also used for insurance underwri...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scandinavian actuarial journal 2018-10, Vol.2018 (9), p.753-769
Hauptverfasser: Heras, Antonio, Moreno, Ignacio, Vilar-Zanón, José L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 769
container_issue 9
container_start_page 753
container_title Scandinavian actuarial journal
container_volume 2018
creator Heras, Antonio
Moreno, Ignacio
Vilar-Zanón, José L.
description Two-part models based on generalized linear models are widely used in insurance rate-making for predicting the expected loss. This paper explores an alternative method based on quantile regression which provides more information about the loss distribution and can be also used for insurance underwriting. Quantile regression allows estimating the aggregate claim cost quantiles of a policy given a number of covariates. To do so, a first stage is required, which involves fitting a logistic regression to estimate, for every policy, the probability of submitting at least one claim. The proposed methodology is illustrated using a portfolio of car insurance policies. This application shows that the results of the quantile regression are highly dependent on the claim probability estimates. The paper also examines an application of quantile regression to premium safety loading calculation, the so-called Quantile Premium Principle (QPP). We propose a premium calculation based on quantile regression which inherits the good properties of the quantiles. Using the same insurance portfolio data-set, we find that the QPP captures the riskiness of the policies better than the expected value premium principle.
doi_str_mv 10.1080/03461238.2018.1452786
format Article
fullrecord <record><control><sourceid>proquest_infor</sourceid><recordid>TN_cdi_proquest_journals_2114711579</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2114711579</sourcerecordid><originalsourceid>FETCH-LOGICAL-c370t-d393491a4d2dde645e771424d6f0220797d92886711572c739df079f7053c0923</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKs_QVjwvHXysZvNzVK0CgUveg5hk5TUbbJNshT_vbu2Xj0NDM_7DvMgdI9hgaGBR6CsxoQ2CwK4WWBWEd7UF2iG6wqXBChcotnElBN0jW5S2gFAPUIztF76QvV951qVXfBFsEU-hjJltTXFYVA-u84U0WyjSWkCciicT0NUvh33Kpu9-nJ-e4uurOqSuTvPOfp8ef5YvZab9_XbarkpW8ohl5oKygRWTBOtTc0qwzlmhOnaAiHABdeCNE3NMa44aTkV2o5by6GiLQhC5-jh1NvHcBhMynIXhujHk5JgzH5zYqSqE9XGkFI0VvbR7VX8lhjk5Ez-OZOTM3l2NuaeTjnnbYh7dQyx0zKr7y5EO73skqT_V_wAUQxxRw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2114711579</pqid></control><display><type>article</type><title>An application of two-stage quantile regression to insurance ratemaking</title><source>EBSCOhost Business Source Complete</source><creator>Heras, Antonio ; Moreno, Ignacio ; Vilar-Zanón, José L.</creator><creatorcontrib>Heras, Antonio ; Moreno, Ignacio ; Vilar-Zanón, José L.</creatorcontrib><description>Two-part models based on generalized linear models are widely used in insurance rate-making for predicting the expected loss. This paper explores an alternative method based on quantile regression which provides more information about the loss distribution and can be also used for insurance underwriting. Quantile regression allows estimating the aggregate claim cost quantiles of a policy given a number of covariates. To do so, a first stage is required, which involves fitting a logistic regression to estimate, for every policy, the probability of submitting at least one claim. The proposed methodology is illustrated using a portfolio of car insurance policies. This application shows that the results of the quantile regression are highly dependent on the claim probability estimates. The paper also examines an application of quantile regression to premium safety loading calculation, the so-called Quantile Premium Principle (QPP). We propose a premium calculation based on quantile regression which inherits the good properties of the quantiles. Using the same insurance portfolio data-set, we find that the QPP captures the riskiness of the policies better than the expected value premium principle.</description><identifier>ISSN: 0346-1238</identifier><identifier>EISSN: 1651-2030</identifier><identifier>DOI: 10.1080/03461238.2018.1452786</identifier><language>eng</language><publisher>Stockholm: Taylor &amp; Francis</publisher><subject>Actuarial science ; Adultery ; Aggregate claims model ; Automobile insurance ; Generalized linear models ; Insurance policies ; insurance rate making ; insurance underwriting ; premium risk loading ; quantile regression ; Regression analysis ; Underwriting</subject><ispartof>Scandinavian actuarial journal, 2018-10, Vol.2018 (9), p.753-769</ispartof><rights>2018 Informa UK Limited, trading as Taylor &amp; Francis Group 2018</rights><rights>2018 Informa UK Limited, trading as Taylor &amp; Francis Group</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c370t-d393491a4d2dde645e771424d6f0220797d92886711572c739df079f7053c0923</citedby><cites>FETCH-LOGICAL-c370t-d393491a4d2dde645e771424d6f0220797d92886711572c739df079f7053c0923</cites><orcidid>0000-0002-4476-4614</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Heras, Antonio</creatorcontrib><creatorcontrib>Moreno, Ignacio</creatorcontrib><creatorcontrib>Vilar-Zanón, José L.</creatorcontrib><title>An application of two-stage quantile regression to insurance ratemaking</title><title>Scandinavian actuarial journal</title><description>Two-part models based on generalized linear models are widely used in insurance rate-making for predicting the expected loss. This paper explores an alternative method based on quantile regression which provides more information about the loss distribution and can be also used for insurance underwriting. Quantile regression allows estimating the aggregate claim cost quantiles of a policy given a number of covariates. To do so, a first stage is required, which involves fitting a logistic regression to estimate, for every policy, the probability of submitting at least one claim. The proposed methodology is illustrated using a portfolio of car insurance policies. This application shows that the results of the quantile regression are highly dependent on the claim probability estimates. The paper also examines an application of quantile regression to premium safety loading calculation, the so-called Quantile Premium Principle (QPP). We propose a premium calculation based on quantile regression which inherits the good properties of the quantiles. Using the same insurance portfolio data-set, we find that the QPP captures the riskiness of the policies better than the expected value premium principle.</description><subject>Actuarial science</subject><subject>Adultery</subject><subject>Aggregate claims model</subject><subject>Automobile insurance</subject><subject>Generalized linear models</subject><subject>Insurance policies</subject><subject>insurance rate making</subject><subject>insurance underwriting</subject><subject>premium risk loading</subject><subject>quantile regression</subject><subject>Regression analysis</subject><subject>Underwriting</subject><issn>0346-1238</issn><issn>1651-2030</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWKs_QVjwvHXysZvNzVK0CgUveg5hk5TUbbJNshT_vbu2Xj0NDM_7DvMgdI9hgaGBR6CsxoQ2CwK4WWBWEd7UF2iG6wqXBChcotnElBN0jW5S2gFAPUIztF76QvV951qVXfBFsEU-hjJltTXFYVA-u84U0WyjSWkCciicT0NUvh33Kpu9-nJ-e4uurOqSuTvPOfp8ef5YvZab9_XbarkpW8ohl5oKygRWTBOtTc0qwzlmhOnaAiHABdeCNE3NMa44aTkV2o5by6GiLQhC5-jh1NvHcBhMynIXhujHk5JgzH5zYqSqE9XGkFI0VvbR7VX8lhjk5Ez-OZOTM3l2NuaeTjnnbYh7dQyx0zKr7y5EO73skqT_V_wAUQxxRw</recordid><startdate>20181021</startdate><enddate>20181021</enddate><creator>Heras, Antonio</creator><creator>Moreno, Ignacio</creator><creator>Vilar-Zanón, José L.</creator><general>Taylor &amp; Francis</general><general>Taylor &amp; Francis Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-4476-4614</orcidid></search><sort><creationdate>20181021</creationdate><title>An application of two-stage quantile regression to insurance ratemaking</title><author>Heras, Antonio ; Moreno, Ignacio ; Vilar-Zanón, José L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c370t-d393491a4d2dde645e771424d6f0220797d92886711572c739df079f7053c0923</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Actuarial science</topic><topic>Adultery</topic><topic>Aggregate claims model</topic><topic>Automobile insurance</topic><topic>Generalized linear models</topic><topic>Insurance policies</topic><topic>insurance rate making</topic><topic>insurance underwriting</topic><topic>premium risk loading</topic><topic>quantile regression</topic><topic>Regression analysis</topic><topic>Underwriting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Heras, Antonio</creatorcontrib><creatorcontrib>Moreno, Ignacio</creatorcontrib><creatorcontrib>Vilar-Zanón, José L.</creatorcontrib><collection>CrossRef</collection><jtitle>Scandinavian actuarial journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Heras, Antonio</au><au>Moreno, Ignacio</au><au>Vilar-Zanón, José L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An application of two-stage quantile regression to insurance ratemaking</atitle><jtitle>Scandinavian actuarial journal</jtitle><date>2018-10-21</date><risdate>2018</risdate><volume>2018</volume><issue>9</issue><spage>753</spage><epage>769</epage><pages>753-769</pages><issn>0346-1238</issn><eissn>1651-2030</eissn><abstract>Two-part models based on generalized linear models are widely used in insurance rate-making for predicting the expected loss. This paper explores an alternative method based on quantile regression which provides more information about the loss distribution and can be also used for insurance underwriting. Quantile regression allows estimating the aggregate claim cost quantiles of a policy given a number of covariates. To do so, a first stage is required, which involves fitting a logistic regression to estimate, for every policy, the probability of submitting at least one claim. The proposed methodology is illustrated using a portfolio of car insurance policies. This application shows that the results of the quantile regression are highly dependent on the claim probability estimates. The paper also examines an application of quantile regression to premium safety loading calculation, the so-called Quantile Premium Principle (QPP). We propose a premium calculation based on quantile regression which inherits the good properties of the quantiles. Using the same insurance portfolio data-set, we find that the QPP captures the riskiness of the policies better than the expected value premium principle.</abstract><cop>Stockholm</cop><pub>Taylor &amp; Francis</pub><doi>10.1080/03461238.2018.1452786</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-4476-4614</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0346-1238
ispartof Scandinavian actuarial journal, 2018-10, Vol.2018 (9), p.753-769
issn 0346-1238
1651-2030
language eng
recordid cdi_proquest_journals_2114711579
source EBSCOhost Business Source Complete
subjects Actuarial science
Adultery
Aggregate claims model
Automobile insurance
Generalized linear models
Insurance policies
insurance rate making
insurance underwriting
premium risk loading
quantile regression
Regression analysis
Underwriting
title An application of two-stage quantile regression to insurance ratemaking
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T21%3A17%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_infor&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20application%20of%20two-stage%20quantile%20regression%20to%20insurance%20ratemaking&rft.jtitle=Scandinavian%20actuarial%20journal&rft.au=Heras,%20Antonio&rft.date=2018-10-21&rft.volume=2018&rft.issue=9&rft.spage=753&rft.epage=769&rft.pages=753-769&rft.issn=0346-1238&rft.eissn=1651-2030&rft_id=info:doi/10.1080/03461238.2018.1452786&rft_dat=%3Cproquest_infor%3E2114711579%3C/proquest_infor%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2114711579&rft_id=info:pmid/&rfr_iscdi=true