An application of two-stage quantile regression to insurance ratemaking
Two-part models based on generalized linear models are widely used in insurance rate-making for predicting the expected loss. This paper explores an alternative method based on quantile regression which provides more information about the loss distribution and can be also used for insurance underwri...
Gespeichert in:
Veröffentlicht in: | Scandinavian actuarial journal 2018-10, Vol.2018 (9), p.753-769 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 769 |
---|---|
container_issue | 9 |
container_start_page | 753 |
container_title | Scandinavian actuarial journal |
container_volume | 2018 |
creator | Heras, Antonio Moreno, Ignacio Vilar-Zanón, José L. |
description | Two-part models based on generalized linear models are widely used in insurance rate-making for predicting the expected loss. This paper explores an alternative method based on quantile regression which provides more information about the loss distribution and can be also used for insurance underwriting. Quantile regression allows estimating the aggregate claim cost quantiles of a policy given a number of covariates. To do so, a first stage is required, which involves fitting a logistic regression to estimate, for every policy, the probability of submitting at least one claim. The proposed methodology is illustrated using a portfolio of car insurance policies. This application shows that the results of the quantile regression are highly dependent on the claim probability estimates. The paper also examines an application of quantile regression to premium safety loading calculation, the so-called Quantile Premium Principle (QPP). We propose a premium calculation based on quantile regression which inherits the good properties of the quantiles. Using the same insurance portfolio data-set, we find that the QPP captures the riskiness of the policies better than the expected value premium principle. |
doi_str_mv | 10.1080/03461238.2018.1452786 |
format | Article |
fullrecord | <record><control><sourceid>proquest_infor</sourceid><recordid>TN_cdi_proquest_journals_2114711579</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2114711579</sourcerecordid><originalsourceid>FETCH-LOGICAL-c370t-d393491a4d2dde645e771424d6f0220797d92886711572c739df079f7053c0923</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKs_QVjwvHXysZvNzVK0CgUveg5hk5TUbbJNshT_vbu2Xj0NDM_7DvMgdI9hgaGBR6CsxoQ2CwK4WWBWEd7UF2iG6wqXBChcotnElBN0jW5S2gFAPUIztF76QvV951qVXfBFsEU-hjJltTXFYVA-u84U0WyjSWkCciicT0NUvh33Kpu9-nJ-e4uurOqSuTvPOfp8ef5YvZab9_XbarkpW8ohl5oKygRWTBOtTc0qwzlmhOnaAiHABdeCNE3NMa44aTkV2o5by6GiLQhC5-jh1NvHcBhMynIXhujHk5JgzH5zYqSqE9XGkFI0VvbR7VX8lhjk5Ez-OZOTM3l2NuaeTjnnbYh7dQyx0zKr7y5EO73skqT_V_wAUQxxRw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2114711579</pqid></control><display><type>article</type><title>An application of two-stage quantile regression to insurance ratemaking</title><source>EBSCOhost Business Source Complete</source><creator>Heras, Antonio ; Moreno, Ignacio ; Vilar-Zanón, José L.</creator><creatorcontrib>Heras, Antonio ; Moreno, Ignacio ; Vilar-Zanón, José L.</creatorcontrib><description>Two-part models based on generalized linear models are widely used in insurance rate-making for predicting the expected loss. This paper explores an alternative method based on quantile regression which provides more information about the loss distribution and can be also used for insurance underwriting. Quantile regression allows estimating the aggregate claim cost quantiles of a policy given a number of covariates. To do so, a first stage is required, which involves fitting a logistic regression to estimate, for every policy, the probability of submitting at least one claim. The proposed methodology is illustrated using a portfolio of car insurance policies. This application shows that the results of the quantile regression are highly dependent on the claim probability estimates. The paper also examines an application of quantile regression to premium safety loading calculation, the so-called Quantile Premium Principle (QPP). We propose a premium calculation based on quantile regression which inherits the good properties of the quantiles. Using the same insurance portfolio data-set, we find that the QPP captures the riskiness of the policies better than the expected value premium principle.</description><identifier>ISSN: 0346-1238</identifier><identifier>EISSN: 1651-2030</identifier><identifier>DOI: 10.1080/03461238.2018.1452786</identifier><language>eng</language><publisher>Stockholm: Taylor & Francis</publisher><subject>Actuarial science ; Adultery ; Aggregate claims model ; Automobile insurance ; Generalized linear models ; Insurance policies ; insurance rate making ; insurance underwriting ; premium risk loading ; quantile regression ; Regression analysis ; Underwriting</subject><ispartof>Scandinavian actuarial journal, 2018-10, Vol.2018 (9), p.753-769</ispartof><rights>2018 Informa UK Limited, trading as Taylor & Francis Group 2018</rights><rights>2018 Informa UK Limited, trading as Taylor & Francis Group</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c370t-d393491a4d2dde645e771424d6f0220797d92886711572c739df079f7053c0923</citedby><cites>FETCH-LOGICAL-c370t-d393491a4d2dde645e771424d6f0220797d92886711572c739df079f7053c0923</cites><orcidid>0000-0002-4476-4614</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Heras, Antonio</creatorcontrib><creatorcontrib>Moreno, Ignacio</creatorcontrib><creatorcontrib>Vilar-Zanón, José L.</creatorcontrib><title>An application of two-stage quantile regression to insurance ratemaking</title><title>Scandinavian actuarial journal</title><description>Two-part models based on generalized linear models are widely used in insurance rate-making for predicting the expected loss. This paper explores an alternative method based on quantile regression which provides more information about the loss distribution and can be also used for insurance underwriting. Quantile regression allows estimating the aggregate claim cost quantiles of a policy given a number of covariates. To do so, a first stage is required, which involves fitting a logistic regression to estimate, for every policy, the probability of submitting at least one claim. The proposed methodology is illustrated using a portfolio of car insurance policies. This application shows that the results of the quantile regression are highly dependent on the claim probability estimates. The paper also examines an application of quantile regression to premium safety loading calculation, the so-called Quantile Premium Principle (QPP). We propose a premium calculation based on quantile regression which inherits the good properties of the quantiles. Using the same insurance portfolio data-set, we find that the QPP captures the riskiness of the policies better than the expected value premium principle.</description><subject>Actuarial science</subject><subject>Adultery</subject><subject>Aggregate claims model</subject><subject>Automobile insurance</subject><subject>Generalized linear models</subject><subject>Insurance policies</subject><subject>insurance rate making</subject><subject>insurance underwriting</subject><subject>premium risk loading</subject><subject>quantile regression</subject><subject>Regression analysis</subject><subject>Underwriting</subject><issn>0346-1238</issn><issn>1651-2030</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWKs_QVjwvHXysZvNzVK0CgUveg5hk5TUbbJNshT_vbu2Xj0NDM_7DvMgdI9hgaGBR6CsxoQ2CwK4WWBWEd7UF2iG6wqXBChcotnElBN0jW5S2gFAPUIztF76QvV951qVXfBFsEU-hjJltTXFYVA-u84U0WyjSWkCciicT0NUvh33Kpu9-nJ-e4uurOqSuTvPOfp8ef5YvZab9_XbarkpW8ohl5oKygRWTBOtTc0qwzlmhOnaAiHABdeCNE3NMa44aTkV2o5by6GiLQhC5-jh1NvHcBhMynIXhujHk5JgzH5zYqSqE9XGkFI0VvbR7VX8lhjk5Ez-OZOTM3l2NuaeTjnnbYh7dQyx0zKr7y5EO73skqT_V_wAUQxxRw</recordid><startdate>20181021</startdate><enddate>20181021</enddate><creator>Heras, Antonio</creator><creator>Moreno, Ignacio</creator><creator>Vilar-Zanón, José L.</creator><general>Taylor & Francis</general><general>Taylor & Francis Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-4476-4614</orcidid></search><sort><creationdate>20181021</creationdate><title>An application of two-stage quantile regression to insurance ratemaking</title><author>Heras, Antonio ; Moreno, Ignacio ; Vilar-Zanón, José L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c370t-d393491a4d2dde645e771424d6f0220797d92886711572c739df079f7053c0923</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Actuarial science</topic><topic>Adultery</topic><topic>Aggregate claims model</topic><topic>Automobile insurance</topic><topic>Generalized linear models</topic><topic>Insurance policies</topic><topic>insurance rate making</topic><topic>insurance underwriting</topic><topic>premium risk loading</topic><topic>quantile regression</topic><topic>Regression analysis</topic><topic>Underwriting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Heras, Antonio</creatorcontrib><creatorcontrib>Moreno, Ignacio</creatorcontrib><creatorcontrib>Vilar-Zanón, José L.</creatorcontrib><collection>CrossRef</collection><jtitle>Scandinavian actuarial journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Heras, Antonio</au><au>Moreno, Ignacio</au><au>Vilar-Zanón, José L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An application of two-stage quantile regression to insurance ratemaking</atitle><jtitle>Scandinavian actuarial journal</jtitle><date>2018-10-21</date><risdate>2018</risdate><volume>2018</volume><issue>9</issue><spage>753</spage><epage>769</epage><pages>753-769</pages><issn>0346-1238</issn><eissn>1651-2030</eissn><abstract>Two-part models based on generalized linear models are widely used in insurance rate-making for predicting the expected loss. This paper explores an alternative method based on quantile regression which provides more information about the loss distribution and can be also used for insurance underwriting. Quantile regression allows estimating the aggregate claim cost quantiles of a policy given a number of covariates. To do so, a first stage is required, which involves fitting a logistic regression to estimate, for every policy, the probability of submitting at least one claim. The proposed methodology is illustrated using a portfolio of car insurance policies. This application shows that the results of the quantile regression are highly dependent on the claim probability estimates. The paper also examines an application of quantile regression to premium safety loading calculation, the so-called Quantile Premium Principle (QPP). We propose a premium calculation based on quantile regression which inherits the good properties of the quantiles. Using the same insurance portfolio data-set, we find that the QPP captures the riskiness of the policies better than the expected value premium principle.</abstract><cop>Stockholm</cop><pub>Taylor & Francis</pub><doi>10.1080/03461238.2018.1452786</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-4476-4614</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0346-1238 |
ispartof | Scandinavian actuarial journal, 2018-10, Vol.2018 (9), p.753-769 |
issn | 0346-1238 1651-2030 |
language | eng |
recordid | cdi_proquest_journals_2114711579 |
source | EBSCOhost Business Source Complete |
subjects | Actuarial science Adultery Aggregate claims model Automobile insurance Generalized linear models Insurance policies insurance rate making insurance underwriting premium risk loading quantile regression Regression analysis Underwriting |
title | An application of two-stage quantile regression to insurance ratemaking |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T21%3A17%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_infor&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20application%20of%20two-stage%20quantile%20regression%20to%20insurance%20ratemaking&rft.jtitle=Scandinavian%20actuarial%20journal&rft.au=Heras,%20Antonio&rft.date=2018-10-21&rft.volume=2018&rft.issue=9&rft.spage=753&rft.epage=769&rft.pages=753-769&rft.issn=0346-1238&rft.eissn=1651-2030&rft_id=info:doi/10.1080/03461238.2018.1452786&rft_dat=%3Cproquest_infor%3E2114711579%3C/proquest_infor%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2114711579&rft_id=info:pmid/&rfr_iscdi=true |