Variability of the adiabatic parameter in monoatomic thermal and non-thermal plasmas

Context. Numerical models of the evolution of interstellar and integalactic plasmas often assume that the adiabatic parameter γ (the ratio of the specific heats) is constant (5/3 in monoatomic plasmas). However, γ is determined by the total internal energy of the plasma, which depends on the ionic a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Astronomy and astrophysics (Berlin) 2018-08, Vol.616, p.A58
Hauptverfasser: de Avillez, Miguel A., Anela, Gervásio J., Breitschwerdt, Dieter
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page A58
container_title Astronomy and astrophysics (Berlin)
container_volume 616
creator de Avillez, Miguel A.
Anela, Gervásio J.
Breitschwerdt, Dieter
description Context. Numerical models of the evolution of interstellar and integalactic plasmas often assume that the adiabatic parameter γ (the ratio of the specific heats) is constant (5/3 in monoatomic plasmas). However, γ is determined by the total internal energy of the plasma, which depends on the ionic and excitation state of the plasma. Hence, the adiabatic parameter may not be constant across the range of temperatures available in the interstellar medium. Aims. We aim to carry out detailed simulations of the thermal evolution of plasmas with Maxwell–Boltzmann and non-thermal (κ and n) electron distributions in order to determine the temperature variability of the total internal energy and of the adiabatic parameter. Methods. The plasma, composed of H, He, C, N, O, Ne, Mg, Si, S, and Fe atoms and ions, evolves under collisional ionization equilibrium conditions, from an initial temperature of 109 K. The calculations include electron impact ionization, radiative and dielectronic recombinations and line excitation. The ionization structure was calculated solving a system of 112 linear equations using the Gauss elimination method with scaled partial pivoting. Numerical integrations used in the calculation of ionization and excitation rates are carried out using the double-exponential over a semi-finite interval method. In both methods a precision of 10−15 is adopted. Results. The total internal energy of the plasma is mainly dominated by the ionization energy for temperatures lower than 8 × 104 K with the excitation energy having a contribution of less than one percent. In thermal and non-thermal plasmas composed of H, He, and metals, the adiabatic parameter evolution is determined by the H and He ionizations leading to a profile in general having three transitions. However, for κ distributed plasmas these three transitions are not observed for κ < 15 and for κ < 5 there are no transitions. In general, γ varies from 1.01 to 5/3. Lookup tables of the γ parameter are presented as supplementary material.
doi_str_mv 10.1051/0004-6361/201832948
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2114680139</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2114680139</sourcerecordid><originalsourceid>FETCH-LOGICAL-c360t-38f174b14bad5ba67c451d3f36419e4c7ff71418703a8a961041df117e1337053</originalsourceid><addsrcrecordid>eNo9kNFKwzAUhoMoOKdP4E3B67qcJk3aSxlOxYleTAVvwmmbYGfb1CQD9_ZmTHd1-A_ffw58hFwCvQaaw4xSylPBBMwyCgXLSl4ckQlwlqVUcnFMJgfilJx5v44xi-CErN7QtVi1XRu2iTVJ-NQJNnGDoa2TER32OmiXtEPS28FisH3cR8r12CU4NMlgh_Q_jx36Hv05OTHYeX3xN6fkdXG7mt-ny-e7h_nNMq2ZoCFlhQHJK-AVNnmFQtY8h4YZJjiUmtfSGAkcCkkZFlgKoBwaAyA1MCZpzqbkan93dPZ7o31Qa7txQ3ypMgAuCgqsjBTbU7Wz3jtt1OjaHt1WAVU7fWonR-3kqIO-2Er3rdYH_XOooPtSQjKZq4K-q8f87mW-KD_UE_sFU2VwXw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2114680139</pqid></control><display><type>article</type><title>Variability of the adiabatic parameter in monoatomic thermal and non-thermal plasmas</title><source>Bacon EDP Sciences France Licence nationale-ISTEX-PS-Journals-PFISTEX</source><source>EDP Sciences</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>de Avillez, Miguel A. ; Anela, Gervásio J. ; Breitschwerdt, Dieter</creator><creatorcontrib>de Avillez, Miguel A. ; Anela, Gervásio J. ; Breitschwerdt, Dieter</creatorcontrib><description>Context. Numerical models of the evolution of interstellar and integalactic plasmas often assume that the adiabatic parameter γ (the ratio of the specific heats) is constant (5/3 in monoatomic plasmas). However, γ is determined by the total internal energy of the plasma, which depends on the ionic and excitation state of the plasma. Hence, the adiabatic parameter may not be constant across the range of temperatures available in the interstellar medium. Aims. We aim to carry out detailed simulations of the thermal evolution of plasmas with Maxwell–Boltzmann and non-thermal (κ and n) electron distributions in order to determine the temperature variability of the total internal energy and of the adiabatic parameter. Methods. The plasma, composed of H, He, C, N, O, Ne, Mg, Si, S, and Fe atoms and ions, evolves under collisional ionization equilibrium conditions, from an initial temperature of 109 K. The calculations include electron impact ionization, radiative and dielectronic recombinations and line excitation. The ionization structure was calculated solving a system of 112 linear equations using the Gauss elimination method with scaled partial pivoting. Numerical integrations used in the calculation of ionization and excitation rates are carried out using the double-exponential over a semi-finite interval method. In both methods a precision of 10−15 is adopted. Results. The total internal energy of the plasma is mainly dominated by the ionization energy for temperatures lower than 8 × 104 K with the excitation energy having a contribution of less than one percent. In thermal and non-thermal plasmas composed of H, He, and metals, the adiabatic parameter evolution is determined by the H and He ionizations leading to a profile in general having three transitions. However, for κ distributed plasmas these three transitions are not observed for κ &lt; 15 and for κ &lt; 5 there are no transitions. In general, γ varies from 1.01 to 5/3. Lookup tables of the γ parameter are presented as supplementary material.</description><identifier>ISSN: 0004-6361</identifier><identifier>EISSN: 1432-0746</identifier><identifier>DOI: 10.1051/0004-6361/201832948</identifier><language>eng</language><publisher>Heidelberg: EDP Sciences</publisher><subject>Adiabatic flow ; atomic data ; atomic processes ; Computer simulation ; Energy ; Equilibrium conditions ; Excitation ; Gaussian elimination ; Helium ; hydrodynamics ; intergalactic medium ; Internal energy ; Interstellar matter ; Ionization ; Iron ; ISM: general ; Linear equations ; Lookup tables ; Mathematical models ; methods: numerical ; Parameters ; Plasma ; Thermal evolution ; Thermal plasmas ; Variability</subject><ispartof>Astronomy and astrophysics (Berlin), 2018-08, Vol.616, p.A58</ispartof><rights>Copyright EDP Sciences Aug 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c360t-38f174b14bad5ba67c451d3f36419e4c7ff71418703a8a961041df117e1337053</citedby><cites>FETCH-LOGICAL-c360t-38f174b14bad5ba67c451d3f36419e4c7ff71418703a8a961041df117e1337053</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,3726,27923,27924</link.rule.ids></links><search><creatorcontrib>de Avillez, Miguel A.</creatorcontrib><creatorcontrib>Anela, Gervásio J.</creatorcontrib><creatorcontrib>Breitschwerdt, Dieter</creatorcontrib><title>Variability of the adiabatic parameter in monoatomic thermal and non-thermal plasmas</title><title>Astronomy and astrophysics (Berlin)</title><description>Context. Numerical models of the evolution of interstellar and integalactic plasmas often assume that the adiabatic parameter γ (the ratio of the specific heats) is constant (5/3 in monoatomic plasmas). However, γ is determined by the total internal energy of the plasma, which depends on the ionic and excitation state of the plasma. Hence, the adiabatic parameter may not be constant across the range of temperatures available in the interstellar medium. Aims. We aim to carry out detailed simulations of the thermal evolution of plasmas with Maxwell–Boltzmann and non-thermal (κ and n) electron distributions in order to determine the temperature variability of the total internal energy and of the adiabatic parameter. Methods. The plasma, composed of H, He, C, N, O, Ne, Mg, Si, S, and Fe atoms and ions, evolves under collisional ionization equilibrium conditions, from an initial temperature of 109 K. The calculations include electron impact ionization, radiative and dielectronic recombinations and line excitation. The ionization structure was calculated solving a system of 112 linear equations using the Gauss elimination method with scaled partial pivoting. Numerical integrations used in the calculation of ionization and excitation rates are carried out using the double-exponential over a semi-finite interval method. In both methods a precision of 10−15 is adopted. Results. The total internal energy of the plasma is mainly dominated by the ionization energy for temperatures lower than 8 × 104 K with the excitation energy having a contribution of less than one percent. In thermal and non-thermal plasmas composed of H, He, and metals, the adiabatic parameter evolution is determined by the H and He ionizations leading to a profile in general having three transitions. However, for κ distributed plasmas these three transitions are not observed for κ &lt; 15 and for κ &lt; 5 there are no transitions. In general, γ varies from 1.01 to 5/3. Lookup tables of the γ parameter are presented as supplementary material.</description><subject>Adiabatic flow</subject><subject>atomic data</subject><subject>atomic processes</subject><subject>Computer simulation</subject><subject>Energy</subject><subject>Equilibrium conditions</subject><subject>Excitation</subject><subject>Gaussian elimination</subject><subject>Helium</subject><subject>hydrodynamics</subject><subject>intergalactic medium</subject><subject>Internal energy</subject><subject>Interstellar matter</subject><subject>Ionization</subject><subject>Iron</subject><subject>ISM: general</subject><subject>Linear equations</subject><subject>Lookup tables</subject><subject>Mathematical models</subject><subject>methods: numerical</subject><subject>Parameters</subject><subject>Plasma</subject><subject>Thermal evolution</subject><subject>Thermal plasmas</subject><subject>Variability</subject><issn>0004-6361</issn><issn>1432-0746</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNo9kNFKwzAUhoMoOKdP4E3B67qcJk3aSxlOxYleTAVvwmmbYGfb1CQD9_ZmTHd1-A_ffw58hFwCvQaaw4xSylPBBMwyCgXLSl4ckQlwlqVUcnFMJgfilJx5v44xi-CErN7QtVi1XRu2iTVJ-NQJNnGDoa2TER32OmiXtEPS28FisH3cR8r12CU4NMlgh_Q_jx36Hv05OTHYeX3xN6fkdXG7mt-ny-e7h_nNMq2ZoCFlhQHJK-AVNnmFQtY8h4YZJjiUmtfSGAkcCkkZFlgKoBwaAyA1MCZpzqbkan93dPZ7o31Qa7txQ3ypMgAuCgqsjBTbU7Wz3jtt1OjaHt1WAVU7fWonR-3kqIO-2Er3rdYH_XOooPtSQjKZq4K-q8f87mW-KD_UE_sFU2VwXw</recordid><startdate>20180801</startdate><enddate>20180801</enddate><creator>de Avillez, Miguel A.</creator><creator>Anela, Gervásio J.</creator><creator>Breitschwerdt, Dieter</creator><general>EDP Sciences</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20180801</creationdate><title>Variability of the adiabatic parameter in monoatomic thermal and non-thermal plasmas</title><author>de Avillez, Miguel A. ; Anela, Gervásio J. ; Breitschwerdt, Dieter</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c360t-38f174b14bad5ba67c451d3f36419e4c7ff71418703a8a961041df117e1337053</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Adiabatic flow</topic><topic>atomic data</topic><topic>atomic processes</topic><topic>Computer simulation</topic><topic>Energy</topic><topic>Equilibrium conditions</topic><topic>Excitation</topic><topic>Gaussian elimination</topic><topic>Helium</topic><topic>hydrodynamics</topic><topic>intergalactic medium</topic><topic>Internal energy</topic><topic>Interstellar matter</topic><topic>Ionization</topic><topic>Iron</topic><topic>ISM: general</topic><topic>Linear equations</topic><topic>Lookup tables</topic><topic>Mathematical models</topic><topic>methods: numerical</topic><topic>Parameters</topic><topic>Plasma</topic><topic>Thermal evolution</topic><topic>Thermal plasmas</topic><topic>Variability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>de Avillez, Miguel A.</creatorcontrib><creatorcontrib>Anela, Gervásio J.</creatorcontrib><creatorcontrib>Breitschwerdt, Dieter</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Astronomy and astrophysics (Berlin)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>de Avillez, Miguel A.</au><au>Anela, Gervásio J.</au><au>Breitschwerdt, Dieter</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Variability of the adiabatic parameter in monoatomic thermal and non-thermal plasmas</atitle><jtitle>Astronomy and astrophysics (Berlin)</jtitle><date>2018-08-01</date><risdate>2018</risdate><volume>616</volume><spage>A58</spage><pages>A58-</pages><issn>0004-6361</issn><eissn>1432-0746</eissn><abstract>Context. Numerical models of the evolution of interstellar and integalactic plasmas often assume that the adiabatic parameter γ (the ratio of the specific heats) is constant (5/3 in monoatomic plasmas). However, γ is determined by the total internal energy of the plasma, which depends on the ionic and excitation state of the plasma. Hence, the adiabatic parameter may not be constant across the range of temperatures available in the interstellar medium. Aims. We aim to carry out detailed simulations of the thermal evolution of plasmas with Maxwell–Boltzmann and non-thermal (κ and n) electron distributions in order to determine the temperature variability of the total internal energy and of the adiabatic parameter. Methods. The plasma, composed of H, He, C, N, O, Ne, Mg, Si, S, and Fe atoms and ions, evolves under collisional ionization equilibrium conditions, from an initial temperature of 109 K. The calculations include electron impact ionization, radiative and dielectronic recombinations and line excitation. The ionization structure was calculated solving a system of 112 linear equations using the Gauss elimination method with scaled partial pivoting. Numerical integrations used in the calculation of ionization and excitation rates are carried out using the double-exponential over a semi-finite interval method. In both methods a precision of 10−15 is adopted. Results. The total internal energy of the plasma is mainly dominated by the ionization energy for temperatures lower than 8 × 104 K with the excitation energy having a contribution of less than one percent. In thermal and non-thermal plasmas composed of H, He, and metals, the adiabatic parameter evolution is determined by the H and He ionizations leading to a profile in general having three transitions. However, for κ distributed plasmas these three transitions are not observed for κ &lt; 15 and for κ &lt; 5 there are no transitions. In general, γ varies from 1.01 to 5/3. Lookup tables of the γ parameter are presented as supplementary material.</abstract><cop>Heidelberg</cop><pub>EDP Sciences</pub><doi>10.1051/0004-6361/201832948</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0004-6361
ispartof Astronomy and astrophysics (Berlin), 2018-08, Vol.616, p.A58
issn 0004-6361
1432-0746
language eng
recordid cdi_proquest_journals_2114680139
source Bacon EDP Sciences France Licence nationale-ISTEX-PS-Journals-PFISTEX; EDP Sciences; EZB-FREE-00999 freely available EZB journals
subjects Adiabatic flow
atomic data
atomic processes
Computer simulation
Energy
Equilibrium conditions
Excitation
Gaussian elimination
Helium
hydrodynamics
intergalactic medium
Internal energy
Interstellar matter
Ionization
Iron
ISM: general
Linear equations
Lookup tables
Mathematical models
methods: numerical
Parameters
Plasma
Thermal evolution
Thermal plasmas
Variability
title Variability of the adiabatic parameter in monoatomic thermal and non-thermal plasmas
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T13%3A17%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Variability%20of%20the%20adiabatic%20parameter%20in%20monoatomic%20thermal%20and%20non-thermal%20plasmas&rft.jtitle=Astronomy%20and%20astrophysics%20(Berlin)&rft.au=de%20Avillez,%20Miguel%20A.&rft.date=2018-08-01&rft.volume=616&rft.spage=A58&rft.pages=A58-&rft.issn=0004-6361&rft.eissn=1432-0746&rft_id=info:doi/10.1051/0004-6361/201832948&rft_dat=%3Cproquest_cross%3E2114680139%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2114680139&rft_id=info:pmid/&rfr_iscdi=true