Location Privacy Protection Research Based on Querying Anonymous Region Construction for Smart Campus
Along with the rapid development of smart campus, the deployment of novel learning applications for smart campus requires full consideration of information security issues. Location privacy protection is one of the most important issues, which considers the privacy protection and guarantees the qual...
Gespeichert in:
Veröffentlicht in: | Mobile information systems 2018-01, Vol.2018 (2018), p.1-11 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 11 |
---|---|
container_issue | 2018 |
container_start_page | 1 |
container_title | Mobile information systems |
container_volume | 2018 |
creator | Wang, Jin Yin, Chunyong Xi, Jinwen Sun, Ruxia Kim, Gwang-jun |
description | Along with the rapid development of smart campus, the deployment of novel learning applications for smart campus requires full consideration of information security issues. Location privacy protection is one of the most important issues, which considers the privacy protection and guarantees the quality of service. The existing schemes did not consider the area of the querying regions for location-based service provider (LSP) during the construction of the anonymous regions, which led to the low quality of service. To deal with this problem, the user’s query range was introduced to present a novel anonymous region construction scheme. In the proposal, the anonymous server first generated the original anonymous subregions according to the user’s privacy requirements, and then merged these subregions to construct the anonymity regions submitted to LSP based on the size of corresponding querying regions. The security and experiment analysis show that the proposed scheme not only protects the user’s privacy effectively but also decreases the area of LSP querying regions and the region-constructing time, improving the quality of service for smart campus. |
doi_str_mv | 10.1155/2018/3682382 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2114610597</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2114610597</sourcerecordid><originalsourceid>FETCH-LOGICAL-c360t-fd370d2e25a0c3f3adc7a8d756255776da96c587ed7fc536c4069cfb4e0e7d033</originalsourceid><addsrcrecordid>eNqF0EtLxDAQB_AgCq6rN89S8Kh1J0mTtMe1-IIF37C3EvPY7eI2a9Iq_fZmreDR04Thl5nhj9AxhguMGZsQwPmE8pzQnOygEc4FSwtg8934ZiJLAYv5PjoIYQXAgTIxQmbmlGxr1yQPvv6Uqo_VtUb9tJ5MMNKrZXIpg9FJ7Dx2xvd1s0imjWv6tetCRIutLV0TWt8NH63zyfNa-jYp5XrThUO0Z-V7MEe_dYxer69eytt0dn9zV05nqaIc2tRqKkATQ5gERS2VWgmZa8E4YUwIrmXBFcuF0cIqRrnKgBfKvmUGjNBA6RidDnM33n10JrTVynW-iSsrgnHGMbBCRHU-KOVdCN7YauPreG1fYai2QVbbIKvfICM_G_iybrT8qv_TJ4M20Rgr_zSBTHBMvwE5Z32x</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2114610597</pqid></control><display><type>article</type><title>Location Privacy Protection Research Based on Querying Anonymous Region Construction for Smart Campus</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Wiley Online Library Open Access</source><source>Alma/SFX Local Collection</source><creator>Wang, Jin ; Yin, Chunyong ; Xi, Jinwen ; Sun, Ruxia ; Kim, Gwang-jun</creator><contributor>Yim, Jaegeol ; Jaegeol Yim</contributor><creatorcontrib>Wang, Jin ; Yin, Chunyong ; Xi, Jinwen ; Sun, Ruxia ; Kim, Gwang-jun ; Yim, Jaegeol ; Jaegeol Yim</creatorcontrib><description>Along with the rapid development of smart campus, the deployment of novel learning applications for smart campus requires full consideration of information security issues. Location privacy protection is one of the most important issues, which considers the privacy protection and guarantees the quality of service. The existing schemes did not consider the area of the querying regions for location-based service provider (LSP) during the construction of the anonymous regions, which led to the low quality of service. To deal with this problem, the user’s query range was introduced to present a novel anonymous region construction scheme. In the proposal, the anonymous server first generated the original anonymous subregions according to the user’s privacy requirements, and then merged these subregions to construct the anonymity regions submitted to LSP based on the size of corresponding querying regions. The security and experiment analysis show that the proposed scheme not only protects the user’s privacy effectively but also decreases the area of LSP querying regions and the region-constructing time, improving the quality of service for smart campus.</description><identifier>ISSN: 1574-017X</identifier><identifier>EISSN: 1875-905X</identifier><identifier>DOI: 10.1155/2018/3682382</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Publishing Corporation</publisher><subject>Algorithms ; Cybersecurity ; Identity theft ; Location based services ; Methods ; Neural networks ; Personal information ; Privacy ; Queries ; Researchers</subject><ispartof>Mobile information systems, 2018-01, Vol.2018 (2018), p.1-11</ispartof><rights>Copyright © 2018 Ruxia Sun et al.</rights><rights>Copyright © 2018 Ruxia Sun et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. http://creativecommons.org/licenses/by/4.0</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c360t-fd370d2e25a0c3f3adc7a8d756255776da96c587ed7fc536c4069cfb4e0e7d033</citedby><cites>FETCH-LOGICAL-c360t-fd370d2e25a0c3f3adc7a8d756255776da96c587ed7fc536c4069cfb4e0e7d033</cites><orcidid>0000-0002-0397-3241 ; 0000-0001-5473-8738 ; 0000-0001-7427-4766 ; 0000-0001-8892-4424 ; 0000-0001-5764-2432</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,27928,27929</link.rule.ids></links><search><contributor>Yim, Jaegeol</contributor><contributor>Jaegeol Yim</contributor><creatorcontrib>Wang, Jin</creatorcontrib><creatorcontrib>Yin, Chunyong</creatorcontrib><creatorcontrib>Xi, Jinwen</creatorcontrib><creatorcontrib>Sun, Ruxia</creatorcontrib><creatorcontrib>Kim, Gwang-jun</creatorcontrib><title>Location Privacy Protection Research Based on Querying Anonymous Region Construction for Smart Campus</title><title>Mobile information systems</title><description>Along with the rapid development of smart campus, the deployment of novel learning applications for smart campus requires full consideration of information security issues. Location privacy protection is one of the most important issues, which considers the privacy protection and guarantees the quality of service. The existing schemes did not consider the area of the querying regions for location-based service provider (LSP) during the construction of the anonymous regions, which led to the low quality of service. To deal with this problem, the user’s query range was introduced to present a novel anonymous region construction scheme. In the proposal, the anonymous server first generated the original anonymous subregions according to the user’s privacy requirements, and then merged these subregions to construct the anonymity regions submitted to LSP based on the size of corresponding querying regions. The security and experiment analysis show that the proposed scheme not only protects the user’s privacy effectively but also decreases the area of LSP querying regions and the region-constructing time, improving the quality of service for smart campus.</description><subject>Algorithms</subject><subject>Cybersecurity</subject><subject>Identity theft</subject><subject>Location based services</subject><subject>Methods</subject><subject>Neural networks</subject><subject>Personal information</subject><subject>Privacy</subject><subject>Queries</subject><subject>Researchers</subject><issn>1574-017X</issn><issn>1875-905X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><recordid>eNqF0EtLxDAQB_AgCq6rN89S8Kh1J0mTtMe1-IIF37C3EvPY7eI2a9Iq_fZmreDR04Thl5nhj9AxhguMGZsQwPmE8pzQnOygEc4FSwtg8934ZiJLAYv5PjoIYQXAgTIxQmbmlGxr1yQPvv6Uqo_VtUb9tJ5MMNKrZXIpg9FJ7Dx2xvd1s0imjWv6tetCRIutLV0TWt8NH63zyfNa-jYp5XrThUO0Z-V7MEe_dYxer69eytt0dn9zV05nqaIc2tRqKkATQ5gERS2VWgmZa8E4YUwIrmXBFcuF0cIqRrnKgBfKvmUGjNBA6RidDnM33n10JrTVynW-iSsrgnHGMbBCRHU-KOVdCN7YauPreG1fYai2QVbbIKvfICM_G_iybrT8qv_TJ4M20Rgr_zSBTHBMvwE5Z32x</recordid><startdate>20180101</startdate><enddate>20180101</enddate><creator>Wang, Jin</creator><creator>Yin, Chunyong</creator><creator>Xi, Jinwen</creator><creator>Sun, Ruxia</creator><creator>Kim, Gwang-jun</creator><general>Hindawi Publishing Corporation</general><general>Hindawi</general><general>Hindawi Limited</general><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-0397-3241</orcidid><orcidid>https://orcid.org/0000-0001-5473-8738</orcidid><orcidid>https://orcid.org/0000-0001-7427-4766</orcidid><orcidid>https://orcid.org/0000-0001-8892-4424</orcidid><orcidid>https://orcid.org/0000-0001-5764-2432</orcidid></search><sort><creationdate>20180101</creationdate><title>Location Privacy Protection Research Based on Querying Anonymous Region Construction for Smart Campus</title><author>Wang, Jin ; Yin, Chunyong ; Xi, Jinwen ; Sun, Ruxia ; Kim, Gwang-jun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c360t-fd370d2e25a0c3f3adc7a8d756255776da96c587ed7fc536c4069cfb4e0e7d033</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Algorithms</topic><topic>Cybersecurity</topic><topic>Identity theft</topic><topic>Location based services</topic><topic>Methods</topic><topic>Neural networks</topic><topic>Personal information</topic><topic>Privacy</topic><topic>Queries</topic><topic>Researchers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Jin</creatorcontrib><creatorcontrib>Yin, Chunyong</creatorcontrib><creatorcontrib>Xi, Jinwen</creatorcontrib><creatorcontrib>Sun, Ruxia</creatorcontrib><creatorcontrib>Kim, Gwang-jun</creatorcontrib><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Mobile information systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Jin</au><au>Yin, Chunyong</au><au>Xi, Jinwen</au><au>Sun, Ruxia</au><au>Kim, Gwang-jun</au><au>Yim, Jaegeol</au><au>Jaegeol Yim</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Location Privacy Protection Research Based on Querying Anonymous Region Construction for Smart Campus</atitle><jtitle>Mobile information systems</jtitle><date>2018-01-01</date><risdate>2018</risdate><volume>2018</volume><issue>2018</issue><spage>1</spage><epage>11</epage><pages>1-11</pages><issn>1574-017X</issn><eissn>1875-905X</eissn><abstract>Along with the rapid development of smart campus, the deployment of novel learning applications for smart campus requires full consideration of information security issues. Location privacy protection is one of the most important issues, which considers the privacy protection and guarantees the quality of service. The existing schemes did not consider the area of the querying regions for location-based service provider (LSP) during the construction of the anonymous regions, which led to the low quality of service. To deal with this problem, the user’s query range was introduced to present a novel anonymous region construction scheme. In the proposal, the anonymous server first generated the original anonymous subregions according to the user’s privacy requirements, and then merged these subregions to construct the anonymity regions submitted to LSP based on the size of corresponding querying regions. The security and experiment analysis show that the proposed scheme not only protects the user’s privacy effectively but also decreases the area of LSP querying regions and the region-constructing time, improving the quality of service for smart campus.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Publishing Corporation</pub><doi>10.1155/2018/3682382</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-0397-3241</orcidid><orcidid>https://orcid.org/0000-0001-5473-8738</orcidid><orcidid>https://orcid.org/0000-0001-7427-4766</orcidid><orcidid>https://orcid.org/0000-0001-8892-4424</orcidid><orcidid>https://orcid.org/0000-0001-5764-2432</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1574-017X |
ispartof | Mobile information systems, 2018-01, Vol.2018 (2018), p.1-11 |
issn | 1574-017X 1875-905X |
language | eng |
recordid | cdi_proquest_journals_2114610597 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Wiley Online Library Open Access; Alma/SFX Local Collection |
subjects | Algorithms Cybersecurity Identity theft Location based services Methods Neural networks Personal information Privacy Queries Researchers |
title | Location Privacy Protection Research Based on Querying Anonymous Region Construction for Smart Campus |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T09%3A29%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Location%20Privacy%20Protection%20Research%20Based%20on%20Querying%20Anonymous%20Region%20Construction%20for%20Smart%20Campus&rft.jtitle=Mobile%20information%20systems&rft.au=Wang,%20Jin&rft.date=2018-01-01&rft.volume=2018&rft.issue=2018&rft.spage=1&rft.epage=11&rft.pages=1-11&rft.issn=1574-017X&rft.eissn=1875-905X&rft_id=info:doi/10.1155/2018/3682382&rft_dat=%3Cproquest_cross%3E2114610597%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2114610597&rft_id=info:pmid/&rfr_iscdi=true |