Location Privacy Protection Research Based on Querying Anonymous Region Construction for Smart Campus

Along with the rapid development of smart campus, the deployment of novel learning applications for smart campus requires full consideration of information security issues. Location privacy protection is one of the most important issues, which considers the privacy protection and guarantees the qual...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mobile information systems 2018-01, Vol.2018 (2018), p.1-11
Hauptverfasser: Wang, Jin, Yin, Chunyong, Xi, Jinwen, Sun, Ruxia, Kim, Gwang-jun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 11
container_issue 2018
container_start_page 1
container_title Mobile information systems
container_volume 2018
creator Wang, Jin
Yin, Chunyong
Xi, Jinwen
Sun, Ruxia
Kim, Gwang-jun
description Along with the rapid development of smart campus, the deployment of novel learning applications for smart campus requires full consideration of information security issues. Location privacy protection is one of the most important issues, which considers the privacy protection and guarantees the quality of service. The existing schemes did not consider the area of the querying regions for location-based service provider (LSP) during the construction of the anonymous regions, which led to the low quality of service. To deal with this problem, the user’s query range was introduced to present a novel anonymous region construction scheme. In the proposal, the anonymous server first generated the original anonymous subregions according to the user’s privacy requirements, and then merged these subregions to construct the anonymity regions submitted to LSP based on the size of corresponding querying regions. The security and experiment analysis show that the proposed scheme not only protects the user’s privacy effectively but also decreases the area of LSP querying regions and the region-constructing time, improving the quality of service for smart campus.
doi_str_mv 10.1155/2018/3682382
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2114610597</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2114610597</sourcerecordid><originalsourceid>FETCH-LOGICAL-c360t-fd370d2e25a0c3f3adc7a8d756255776da96c587ed7fc536c4069cfb4e0e7d033</originalsourceid><addsrcrecordid>eNqF0EtLxDAQB_AgCq6rN89S8Kh1J0mTtMe1-IIF37C3EvPY7eI2a9Iq_fZmreDR04Thl5nhj9AxhguMGZsQwPmE8pzQnOygEc4FSwtg8934ZiJLAYv5PjoIYQXAgTIxQmbmlGxr1yQPvv6Uqo_VtUb9tJ5MMNKrZXIpg9FJ7Dx2xvd1s0imjWv6tetCRIutLV0TWt8NH63zyfNa-jYp5XrThUO0Z-V7MEe_dYxer69eytt0dn9zV05nqaIc2tRqKkATQ5gERS2VWgmZa8E4YUwIrmXBFcuF0cIqRrnKgBfKvmUGjNBA6RidDnM33n10JrTVynW-iSsrgnHGMbBCRHU-KOVdCN7YauPreG1fYai2QVbbIKvfICM_G_iybrT8qv_TJ4M20Rgr_zSBTHBMvwE5Z32x</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2114610597</pqid></control><display><type>article</type><title>Location Privacy Protection Research Based on Querying Anonymous Region Construction for Smart Campus</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Wiley Online Library Open Access</source><source>Alma/SFX Local Collection</source><creator>Wang, Jin ; Yin, Chunyong ; Xi, Jinwen ; Sun, Ruxia ; Kim, Gwang-jun</creator><contributor>Yim, Jaegeol ; Jaegeol Yim</contributor><creatorcontrib>Wang, Jin ; Yin, Chunyong ; Xi, Jinwen ; Sun, Ruxia ; Kim, Gwang-jun ; Yim, Jaegeol ; Jaegeol Yim</creatorcontrib><description>Along with the rapid development of smart campus, the deployment of novel learning applications for smart campus requires full consideration of information security issues. Location privacy protection is one of the most important issues, which considers the privacy protection and guarantees the quality of service. The existing schemes did not consider the area of the querying regions for location-based service provider (LSP) during the construction of the anonymous regions, which led to the low quality of service. To deal with this problem, the user’s query range was introduced to present a novel anonymous region construction scheme. In the proposal, the anonymous server first generated the original anonymous subregions according to the user’s privacy requirements, and then merged these subregions to construct the anonymity regions submitted to LSP based on the size of corresponding querying regions. The security and experiment analysis show that the proposed scheme not only protects the user’s privacy effectively but also decreases the area of LSP querying regions and the region-constructing time, improving the quality of service for smart campus.</description><identifier>ISSN: 1574-017X</identifier><identifier>EISSN: 1875-905X</identifier><identifier>DOI: 10.1155/2018/3682382</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Publishing Corporation</publisher><subject>Algorithms ; Cybersecurity ; Identity theft ; Location based services ; Methods ; Neural networks ; Personal information ; Privacy ; Queries ; Researchers</subject><ispartof>Mobile information systems, 2018-01, Vol.2018 (2018), p.1-11</ispartof><rights>Copyright © 2018 Ruxia Sun et al.</rights><rights>Copyright © 2018 Ruxia Sun et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. http://creativecommons.org/licenses/by/4.0</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c360t-fd370d2e25a0c3f3adc7a8d756255776da96c587ed7fc536c4069cfb4e0e7d033</citedby><cites>FETCH-LOGICAL-c360t-fd370d2e25a0c3f3adc7a8d756255776da96c587ed7fc536c4069cfb4e0e7d033</cites><orcidid>0000-0002-0397-3241 ; 0000-0001-5473-8738 ; 0000-0001-7427-4766 ; 0000-0001-8892-4424 ; 0000-0001-5764-2432</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,27928,27929</link.rule.ids></links><search><contributor>Yim, Jaegeol</contributor><contributor>Jaegeol Yim</contributor><creatorcontrib>Wang, Jin</creatorcontrib><creatorcontrib>Yin, Chunyong</creatorcontrib><creatorcontrib>Xi, Jinwen</creatorcontrib><creatorcontrib>Sun, Ruxia</creatorcontrib><creatorcontrib>Kim, Gwang-jun</creatorcontrib><title>Location Privacy Protection Research Based on Querying Anonymous Region Construction for Smart Campus</title><title>Mobile information systems</title><description>Along with the rapid development of smart campus, the deployment of novel learning applications for smart campus requires full consideration of information security issues. Location privacy protection is one of the most important issues, which considers the privacy protection and guarantees the quality of service. The existing schemes did not consider the area of the querying regions for location-based service provider (LSP) during the construction of the anonymous regions, which led to the low quality of service. To deal with this problem, the user’s query range was introduced to present a novel anonymous region construction scheme. In the proposal, the anonymous server first generated the original anonymous subregions according to the user’s privacy requirements, and then merged these subregions to construct the anonymity regions submitted to LSP based on the size of corresponding querying regions. The security and experiment analysis show that the proposed scheme not only protects the user’s privacy effectively but also decreases the area of LSP querying regions and the region-constructing time, improving the quality of service for smart campus.</description><subject>Algorithms</subject><subject>Cybersecurity</subject><subject>Identity theft</subject><subject>Location based services</subject><subject>Methods</subject><subject>Neural networks</subject><subject>Personal information</subject><subject>Privacy</subject><subject>Queries</subject><subject>Researchers</subject><issn>1574-017X</issn><issn>1875-905X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><recordid>eNqF0EtLxDAQB_AgCq6rN89S8Kh1J0mTtMe1-IIF37C3EvPY7eI2a9Iq_fZmreDR04Thl5nhj9AxhguMGZsQwPmE8pzQnOygEc4FSwtg8934ZiJLAYv5PjoIYQXAgTIxQmbmlGxr1yQPvv6Uqo_VtUb9tJ5MMNKrZXIpg9FJ7Dx2xvd1s0imjWv6tetCRIutLV0TWt8NH63zyfNa-jYp5XrThUO0Z-V7MEe_dYxer69eytt0dn9zV05nqaIc2tRqKkATQ5gERS2VWgmZa8E4YUwIrmXBFcuF0cIqRrnKgBfKvmUGjNBA6RidDnM33n10JrTVynW-iSsrgnHGMbBCRHU-KOVdCN7YauPreG1fYai2QVbbIKvfICM_G_iybrT8qv_TJ4M20Rgr_zSBTHBMvwE5Z32x</recordid><startdate>20180101</startdate><enddate>20180101</enddate><creator>Wang, Jin</creator><creator>Yin, Chunyong</creator><creator>Xi, Jinwen</creator><creator>Sun, Ruxia</creator><creator>Kim, Gwang-jun</creator><general>Hindawi Publishing Corporation</general><general>Hindawi</general><general>Hindawi Limited</general><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-0397-3241</orcidid><orcidid>https://orcid.org/0000-0001-5473-8738</orcidid><orcidid>https://orcid.org/0000-0001-7427-4766</orcidid><orcidid>https://orcid.org/0000-0001-8892-4424</orcidid><orcidid>https://orcid.org/0000-0001-5764-2432</orcidid></search><sort><creationdate>20180101</creationdate><title>Location Privacy Protection Research Based on Querying Anonymous Region Construction for Smart Campus</title><author>Wang, Jin ; Yin, Chunyong ; Xi, Jinwen ; Sun, Ruxia ; Kim, Gwang-jun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c360t-fd370d2e25a0c3f3adc7a8d756255776da96c587ed7fc536c4069cfb4e0e7d033</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Algorithms</topic><topic>Cybersecurity</topic><topic>Identity theft</topic><topic>Location based services</topic><topic>Methods</topic><topic>Neural networks</topic><topic>Personal information</topic><topic>Privacy</topic><topic>Queries</topic><topic>Researchers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Jin</creatorcontrib><creatorcontrib>Yin, Chunyong</creatorcontrib><creatorcontrib>Xi, Jinwen</creatorcontrib><creatorcontrib>Sun, Ruxia</creatorcontrib><creatorcontrib>Kim, Gwang-jun</creatorcontrib><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Mobile information systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Jin</au><au>Yin, Chunyong</au><au>Xi, Jinwen</au><au>Sun, Ruxia</au><au>Kim, Gwang-jun</au><au>Yim, Jaegeol</au><au>Jaegeol Yim</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Location Privacy Protection Research Based on Querying Anonymous Region Construction for Smart Campus</atitle><jtitle>Mobile information systems</jtitle><date>2018-01-01</date><risdate>2018</risdate><volume>2018</volume><issue>2018</issue><spage>1</spage><epage>11</epage><pages>1-11</pages><issn>1574-017X</issn><eissn>1875-905X</eissn><abstract>Along with the rapid development of smart campus, the deployment of novel learning applications for smart campus requires full consideration of information security issues. Location privacy protection is one of the most important issues, which considers the privacy protection and guarantees the quality of service. The existing schemes did not consider the area of the querying regions for location-based service provider (LSP) during the construction of the anonymous regions, which led to the low quality of service. To deal with this problem, the user’s query range was introduced to present a novel anonymous region construction scheme. In the proposal, the anonymous server first generated the original anonymous subregions according to the user’s privacy requirements, and then merged these subregions to construct the anonymity regions submitted to LSP based on the size of corresponding querying regions. The security and experiment analysis show that the proposed scheme not only protects the user’s privacy effectively but also decreases the area of LSP querying regions and the region-constructing time, improving the quality of service for smart campus.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Publishing Corporation</pub><doi>10.1155/2018/3682382</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-0397-3241</orcidid><orcidid>https://orcid.org/0000-0001-5473-8738</orcidid><orcidid>https://orcid.org/0000-0001-7427-4766</orcidid><orcidid>https://orcid.org/0000-0001-8892-4424</orcidid><orcidid>https://orcid.org/0000-0001-5764-2432</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1574-017X
ispartof Mobile information systems, 2018-01, Vol.2018 (2018), p.1-11
issn 1574-017X
1875-905X
language eng
recordid cdi_proquest_journals_2114610597
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Wiley Online Library Open Access; Alma/SFX Local Collection
subjects Algorithms
Cybersecurity
Identity theft
Location based services
Methods
Neural networks
Personal information
Privacy
Queries
Researchers
title Location Privacy Protection Research Based on Querying Anonymous Region Construction for Smart Campus
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T09%3A29%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Location%20Privacy%20Protection%20Research%20Based%20on%20Querying%20Anonymous%20Region%20Construction%20for%20Smart%20Campus&rft.jtitle=Mobile%20information%20systems&rft.au=Wang,%20Jin&rft.date=2018-01-01&rft.volume=2018&rft.issue=2018&rft.spage=1&rft.epage=11&rft.pages=1-11&rft.issn=1574-017X&rft.eissn=1875-905X&rft_id=info:doi/10.1155/2018/3682382&rft_dat=%3Cproquest_cross%3E2114610597%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2114610597&rft_id=info:pmid/&rfr_iscdi=true