HPC^sup 2^-A fully-portable, algebra-based framework for heterogeneous computing. Application to CFD

The variety of computing architectures competing in the exascale race makes the portability of codes of major importance. In this work, the HPC2 code is presented as a fully-portable, algebra-based framework suitable for heterogeneous computing. In its application to CFD, the algorithm of the time-i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computers & fluids 2018-09, Vol.173, p.285
Hauptverfasser: Álvarez, X, Gorobets, A, Trias, FX, Borrell, R, Oyarzun, G
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The variety of computing architectures competing in the exascale race makes the portability of codes of major importance. In this work, the HPC2 code is presented as a fully-portable, algebra-based framework suitable for heterogeneous computing. In its application to CFD, the algorithm of the time-integration phase relies on a reduced set of only three algebraic operations: the sparse matrix-vector product, the linear combination of vectors and the dot product. This algebraic approach combined with a multilevel MPI+OpenMP+OpenCL parallelization naturally provides portability. The performance has been studied on different architectures including multicore CPUs, Intel Xeon Phi accelerators and GPUs of AMD and NVIDIA. The multi-GPU scalability is demonstrated up to 256 devices. The heterogeneous execution is tested on a CPU+GPU hybrid cluster. Finally, results of the direct numerical simulation of a turbulent flow in a 3D air-filled differentially heated cavity are presented to show the capabilities of the HPC2 dealing with large-scale CFD simulations.
ISSN:0045-7930
1879-0747