High-performance multi-GPU solver for describing nonlinear acoustic waves in homogeneous thermoviscous media

•A multi-GPU 3-d solver for modeling ultrasound in thermoviscous media is presented.•The proposed algorithm is based on WENO-Z and third-order Runge–Kutta schemes.•A new multi-GPU communication scheme for the Runge–Kutta scheme is developed.•The optimization process used in developing a single- and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computers & fluids 2018-09, Vol.173, p.195-205
Hauptverfasser: Diaz, Manuel A., Solovchuk, Maxim A., Sheu, Tony W.H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 205
container_issue
container_start_page 195
container_title Computers & fluids
container_volume 173
creator Diaz, Manuel A.
Solovchuk, Maxim A.
Sheu, Tony W.H.
description •A multi-GPU 3-d solver for modeling ultrasound in thermoviscous media is presented.•The proposed algorithm is based on WENO-Z and third-order Runge–Kutta schemes.•A new multi-GPU communication scheme for the Runge–Kutta scheme is developed.•The optimization process used in developing a single- and a multi-GPU solver is detailed.•Simulations using single and multiple GPUs were performed to illustrate the method. A double-precision numerical solver to describe the propagation of high-intensity ultrasound fluctuations using a novel finite-amplitude compressible acoustic model working in multiple processing units (GPUs) is presented. The present solver is based on a conservative hyperbolic formulation derived from a variational analysis of the compressible Navier–Stokes equations and is implemented using an explicit high-order finite difference strategy. In this work, a WENO–Z reconstruction scheme along with a high-order finite-difference stencil are used to approximate the contributions of convective and diffusive spatial operators, respectively. The spatial operators are then associated to a low–storage Runge–Kutta scheme to integrate the system explicitly in time. The present multi-GPU implementation aims to make the best use of every single GPU and gain optimal performance of the algorithm on the per-node basis. To assess the performance of the present solver, a typical mini-server computer with 4 Tesla K80 dual GPU accelerators is used. The results show that the present formulation scales linearly for large domain problems. Moreover, when compared to an OpenMP implementation running with an i7 processor of 4.2 GHz, this is outperformed by our MPI-GPU implementation by a factor of 99. In this work, the present multi-GPU solver is illustrated with a three-dimensional simulation of a highly-intense focused ultrasound propagation.
doi_str_mv 10.1016/j.compfluid.2018.03.008
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2114219058</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0045793018301087</els_id><sourcerecordid>2114219058</sourcerecordid><originalsourceid>FETCH-LOGICAL-c343t-430a8c20ef2028ef8b24a74795017023df5457f59b714cf6c7eb6f4c13ab7d683</originalsourceid><addsrcrecordid>eNqFkFtLxDAQhYMouF5-gwGfWyeXbtpHEW8g6IM-hzSd7GZpmzVpV_z3Zlnx1adhZs6Z4XyEXDEoGbDlzaa0Ydi6fvZdyYHVJYgSoD4iC1arpgAl1TFZAMiqUI2AU3KW0gZyL7hckP7Jr9bFFqMLcTCjRTrM_eSLx7cPmkK_w0jzhnaYbPStH1d0DGPvRzSRGhvmNHlLv8wOE_UjXYchrHDEPKfTGuMQdj7tVXTAzpsLcuJMn_Dyt56Tj4f797un4uX18fnu9qWwQoqpkAJMbTmg48BrdHXLpckxmgqYAi46V8lKuappFZPWLa3CdumkZcK0qlvW4pxcH-5uY_icMU16E-Y45peaMyY5a6Daq9RBZWNIKaLT2-gHE781A71Hqzf6D63eo9UgdEabnbcHJ-YQO49RJ-sxw-t8RDvpLvh_b_wAZN-IfQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2114219058</pqid></control><display><type>article</type><title>High-performance multi-GPU solver for describing nonlinear acoustic waves in homogeneous thermoviscous media</title><source>Access via ScienceDirect (Elsevier)</source><creator>Diaz, Manuel A. ; Solovchuk, Maxim A. ; Sheu, Tony W.H.</creator><creatorcontrib>Diaz, Manuel A. ; Solovchuk, Maxim A. ; Sheu, Tony W.H.</creatorcontrib><description>•A multi-GPU 3-d solver for modeling ultrasound in thermoviscous media is presented.•The proposed algorithm is based on WENO-Z and third-order Runge–Kutta schemes.•A new multi-GPU communication scheme for the Runge–Kutta scheme is developed.•The optimization process used in developing a single- and a multi-GPU solver is detailed.•Simulations using single and multiple GPUs were performed to illustrate the method. A double-precision numerical solver to describe the propagation of high-intensity ultrasound fluctuations using a novel finite-amplitude compressible acoustic model working in multiple processing units (GPUs) is presented. The present solver is based on a conservative hyperbolic formulation derived from a variational analysis of the compressible Navier–Stokes equations and is implemented using an explicit high-order finite difference strategy. In this work, a WENO–Z reconstruction scheme along with a high-order finite-difference stencil are used to approximate the contributions of convective and diffusive spatial operators, respectively. The spatial operators are then associated to a low–storage Runge–Kutta scheme to integrate the system explicitly in time. The present multi-GPU implementation aims to make the best use of every single GPU and gain optimal performance of the algorithm on the per-node basis. To assess the performance of the present solver, a typical mini-server computer with 4 Tesla K80 dual GPU accelerators is used. The results show that the present formulation scales linearly for large domain problems. Moreover, when compared to an OpenMP implementation running with an i7 processor of 4.2 GHz, this is outperformed by our MPI-GPU implementation by a factor of 99. In this work, the present multi-GPU solver is illustrated with a three-dimensional simulation of a highly-intense focused ultrasound propagation.</description><identifier>ISSN: 0045-7930</identifier><identifier>EISSN: 1879-0747</identifier><identifier>DOI: 10.1016/j.compfluid.2018.03.008</identifier><language>eng</language><publisher>Amsterdam: Elsevier Ltd</publisher><subject>Accelerators ; Acoustic propagation ; Acoustics ; Compressibility ; Computational fluid dynamics ; Computer peripherals ; Computer simulation ; Finite difference method ; Finite difference methods ; Finite element analysis ; Fluid dynamics ; GPUs ; Graphics processing units ; Mathematical models ; Microprocessors ; Nonlinear acoustics ; Operators ; Perfectly matched layers ; Runge-Kutta method ; Thermoviscous media ; Variations ; WENO–Z methods</subject><ispartof>Computers &amp; fluids, 2018-09, Vol.173, p.195-205</ispartof><rights>2018 Elsevier Ltd</rights><rights>Copyright Elsevier BV Sep 15, 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c343t-430a8c20ef2028ef8b24a74795017023df5457f59b714cf6c7eb6f4c13ab7d683</citedby><cites>FETCH-LOGICAL-c343t-430a8c20ef2028ef8b24a74795017023df5457f59b714cf6c7eb6f4c13ab7d683</cites><orcidid>0000-0002-0609-8139 ; 0000-0002-4046-7890 ; 0000-0002-5800-9951</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.compfluid.2018.03.008$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>315,782,786,3552,27931,27932,46002</link.rule.ids></links><search><creatorcontrib>Diaz, Manuel A.</creatorcontrib><creatorcontrib>Solovchuk, Maxim A.</creatorcontrib><creatorcontrib>Sheu, Tony W.H.</creatorcontrib><title>High-performance multi-GPU solver for describing nonlinear acoustic waves in homogeneous thermoviscous media</title><title>Computers &amp; fluids</title><description>•A multi-GPU 3-d solver for modeling ultrasound in thermoviscous media is presented.•The proposed algorithm is based on WENO-Z and third-order Runge–Kutta schemes.•A new multi-GPU communication scheme for the Runge–Kutta scheme is developed.•The optimization process used in developing a single- and a multi-GPU solver is detailed.•Simulations using single and multiple GPUs were performed to illustrate the method. A double-precision numerical solver to describe the propagation of high-intensity ultrasound fluctuations using a novel finite-amplitude compressible acoustic model working in multiple processing units (GPUs) is presented. The present solver is based on a conservative hyperbolic formulation derived from a variational analysis of the compressible Navier–Stokes equations and is implemented using an explicit high-order finite difference strategy. In this work, a WENO–Z reconstruction scheme along with a high-order finite-difference stencil are used to approximate the contributions of convective and diffusive spatial operators, respectively. The spatial operators are then associated to a low–storage Runge–Kutta scheme to integrate the system explicitly in time. The present multi-GPU implementation aims to make the best use of every single GPU and gain optimal performance of the algorithm on the per-node basis. To assess the performance of the present solver, a typical mini-server computer with 4 Tesla K80 dual GPU accelerators is used. The results show that the present formulation scales linearly for large domain problems. Moreover, when compared to an OpenMP implementation running with an i7 processor of 4.2 GHz, this is outperformed by our MPI-GPU implementation by a factor of 99. In this work, the present multi-GPU solver is illustrated with a three-dimensional simulation of a highly-intense focused ultrasound propagation.</description><subject>Accelerators</subject><subject>Acoustic propagation</subject><subject>Acoustics</subject><subject>Compressibility</subject><subject>Computational fluid dynamics</subject><subject>Computer peripherals</subject><subject>Computer simulation</subject><subject>Finite difference method</subject><subject>Finite difference methods</subject><subject>Finite element analysis</subject><subject>Fluid dynamics</subject><subject>GPUs</subject><subject>Graphics processing units</subject><subject>Mathematical models</subject><subject>Microprocessors</subject><subject>Nonlinear acoustics</subject><subject>Operators</subject><subject>Perfectly matched layers</subject><subject>Runge-Kutta method</subject><subject>Thermoviscous media</subject><subject>Variations</subject><subject>WENO–Z methods</subject><issn>0045-7930</issn><issn>1879-0747</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqFkFtLxDAQhYMouF5-gwGfWyeXbtpHEW8g6IM-hzSd7GZpmzVpV_z3Zlnx1adhZs6Z4XyEXDEoGbDlzaa0Ydi6fvZdyYHVJYgSoD4iC1arpgAl1TFZAMiqUI2AU3KW0gZyL7hckP7Jr9bFFqMLcTCjRTrM_eSLx7cPmkK_w0jzhnaYbPStH1d0DGPvRzSRGhvmNHlLv8wOE_UjXYchrHDEPKfTGuMQdj7tVXTAzpsLcuJMn_Dyt56Tj4f797un4uX18fnu9qWwQoqpkAJMbTmg48BrdHXLpckxmgqYAi46V8lKuappFZPWLa3CdumkZcK0qlvW4pxcH-5uY_icMU16E-Y45peaMyY5a6Daq9RBZWNIKaLT2-gHE781A71Hqzf6D63eo9UgdEabnbcHJ-YQO49RJ-sxw-t8RDvpLvh_b_wAZN-IfQ</recordid><startdate>20180915</startdate><enddate>20180915</enddate><creator>Diaz, Manuel A.</creator><creator>Solovchuk, Maxim A.</creator><creator>Sheu, Tony W.H.</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-0609-8139</orcidid><orcidid>https://orcid.org/0000-0002-4046-7890</orcidid><orcidid>https://orcid.org/0000-0002-5800-9951</orcidid></search><sort><creationdate>20180915</creationdate><title>High-performance multi-GPU solver for describing nonlinear acoustic waves in homogeneous thermoviscous media</title><author>Diaz, Manuel A. ; Solovchuk, Maxim A. ; Sheu, Tony W.H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c343t-430a8c20ef2028ef8b24a74795017023df5457f59b714cf6c7eb6f4c13ab7d683</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Accelerators</topic><topic>Acoustic propagation</topic><topic>Acoustics</topic><topic>Compressibility</topic><topic>Computational fluid dynamics</topic><topic>Computer peripherals</topic><topic>Computer simulation</topic><topic>Finite difference method</topic><topic>Finite difference methods</topic><topic>Finite element analysis</topic><topic>Fluid dynamics</topic><topic>GPUs</topic><topic>Graphics processing units</topic><topic>Mathematical models</topic><topic>Microprocessors</topic><topic>Nonlinear acoustics</topic><topic>Operators</topic><topic>Perfectly matched layers</topic><topic>Runge-Kutta method</topic><topic>Thermoviscous media</topic><topic>Variations</topic><topic>WENO–Z methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Diaz, Manuel A.</creatorcontrib><creatorcontrib>Solovchuk, Maxim A.</creatorcontrib><creatorcontrib>Sheu, Tony W.H.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computers &amp; fluids</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Diaz, Manuel A.</au><au>Solovchuk, Maxim A.</au><au>Sheu, Tony W.H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High-performance multi-GPU solver for describing nonlinear acoustic waves in homogeneous thermoviscous media</atitle><jtitle>Computers &amp; fluids</jtitle><date>2018-09-15</date><risdate>2018</risdate><volume>173</volume><spage>195</spage><epage>205</epage><pages>195-205</pages><issn>0045-7930</issn><eissn>1879-0747</eissn><abstract>•A multi-GPU 3-d solver for modeling ultrasound in thermoviscous media is presented.•The proposed algorithm is based on WENO-Z and third-order Runge–Kutta schemes.•A new multi-GPU communication scheme for the Runge–Kutta scheme is developed.•The optimization process used in developing a single- and a multi-GPU solver is detailed.•Simulations using single and multiple GPUs were performed to illustrate the method. A double-precision numerical solver to describe the propagation of high-intensity ultrasound fluctuations using a novel finite-amplitude compressible acoustic model working in multiple processing units (GPUs) is presented. The present solver is based on a conservative hyperbolic formulation derived from a variational analysis of the compressible Navier–Stokes equations and is implemented using an explicit high-order finite difference strategy. In this work, a WENO–Z reconstruction scheme along with a high-order finite-difference stencil are used to approximate the contributions of convective and diffusive spatial operators, respectively. The spatial operators are then associated to a low–storage Runge–Kutta scheme to integrate the system explicitly in time. The present multi-GPU implementation aims to make the best use of every single GPU and gain optimal performance of the algorithm on the per-node basis. To assess the performance of the present solver, a typical mini-server computer with 4 Tesla K80 dual GPU accelerators is used. The results show that the present formulation scales linearly for large domain problems. Moreover, when compared to an OpenMP implementation running with an i7 processor of 4.2 GHz, this is outperformed by our MPI-GPU implementation by a factor of 99. In this work, the present multi-GPU solver is illustrated with a three-dimensional simulation of a highly-intense focused ultrasound propagation.</abstract><cop>Amsterdam</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.compfluid.2018.03.008</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-0609-8139</orcidid><orcidid>https://orcid.org/0000-0002-4046-7890</orcidid><orcidid>https://orcid.org/0000-0002-5800-9951</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0045-7930
ispartof Computers & fluids, 2018-09, Vol.173, p.195-205
issn 0045-7930
1879-0747
language eng
recordid cdi_proquest_journals_2114219058
source Access via ScienceDirect (Elsevier)
subjects Accelerators
Acoustic propagation
Acoustics
Compressibility
Computational fluid dynamics
Computer peripherals
Computer simulation
Finite difference method
Finite difference methods
Finite element analysis
Fluid dynamics
GPUs
Graphics processing units
Mathematical models
Microprocessors
Nonlinear acoustics
Operators
Perfectly matched layers
Runge-Kutta method
Thermoviscous media
Variations
WENO–Z methods
title High-performance multi-GPU solver for describing nonlinear acoustic waves in homogeneous thermoviscous media
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-05T20%3A16%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High-performance%20multi-GPU%20solver%20for%20describing%20nonlinear%20acoustic%20waves%20in%20homogeneous%20thermoviscous%20media&rft.jtitle=Computers%20&%20fluids&rft.au=Diaz,%20Manuel%20A.&rft.date=2018-09-15&rft.volume=173&rft.spage=195&rft.epage=205&rft.pages=195-205&rft.issn=0045-7930&rft.eissn=1879-0747&rft_id=info:doi/10.1016/j.compfluid.2018.03.008&rft_dat=%3Cproquest_cross%3E2114219058%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2114219058&rft_id=info:pmid/&rft_els_id=S0045793018301087&rfr_iscdi=true